计算系数

91 篇文章 1 订阅
41 篇文章 0 订阅

QAQ
可以发现,x^n*y^m项的系数一定有一个因数a^n*b^m,所以可以提取出来。
剩下的就是(x+y)^k 的x^n*y^m项的系数了
也就是C(k,n)。
我们可以用杨辉三角的递推来求C(k,n)
而这个a^n*b^m破东西可以用快速幂来求是吧!!!

#include <cstdio>
#include <iostream>
using namespace std;
const int mod=10007;
int tri[2001][2001];
int a,b,k,n,m;
void Yang_Hui_triangle()
{
    tri[1][1]=1;

    for(int i=2;i<=k+1;i++)
     for(int j=1;j<=i;j++)
      tri[i][j]=((tri[i-1][j-1])%mod+(tri[i-1][j])%mod)%mod;
}
int fast_pow(int x,int y)
{
    int ans=1;

    while(y)
    {
        if(y%2) ans=((ans)%mod*(x)%mod)%mod;

        x=(x*x)%mod;

        y/=2;
    }

    return ans;
}
int main()
{
    scanf("%d%d%d%d%d",&a,&b,&k,&n,&m);

    Yang_Hui_triangle();

    int ma=(fast_pow(a%mod,n))%mod;
    int mb=(fast_pow(b%mod,m))%mod;

    printf("%d",((ma*mb)%mod*tri[k+1][n+1])%mod);

    return 0;
}

方法二:用公式来计算C(k,n)
分解每个数,记录在c数组中
然后在乘起来
恩,很快

#include <cstdio>
#include <iostream>
using namespace std;
const int mod=10007;
int c[20000];
int a,b,k,n,m;
int cnt;
void tj(int x)
{
    int i=2;
        while(x>1)
    {
        while(x%i==0)
        {
            c[i]++;
            x=x/i;
        }
        i++;
    }
}
void screen(int x)
{
    int i=2;
        while(x>1)
    {
        while(x%i==0)
        {
            c[i]--;
            x=x/i;
        }
        i++;
    }
}
int js()
{
    int ans=1;

    for(int i=1;i<=k;i++)
     for(int j=1;j<=c[i];j++)
     ans=(ans%mod*i%mod)%mod;

    return ans%mod;
}
int fast_pow(int x,int y)
{
    int ans=1;

    while(y)
    {
        if(y%2) ans=((ans)%mod*(x)%mod)%mod;

        x=(x*x)%mod;

        y/=2;
    }

    return ans;
}
int main()
{
    scanf("%d%d%d%d%d",&a,&b,&k,&n,&m);

    //Yang_Hui_triangle();

    for(int i=k;i>=k-m+1;i--)
    tj(i);
    for(int i=m;i>=1;i--)
    screen(i);

    int ma=(fast_pow(a%mod,n))%mod;
    int mb=(fast_pow(b%mod,m))%mod;
    int last=js();
    printf("%d",((ma*mb)%mod*last)%mod);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值