QAQ
可以发现,x^n*y^m项的系数一定有一个因数a^n*b^m,所以可以提取出来。
剩下的就是(x+y)^k 的x^n*y^m项的系数了
也就是C(k,n)。
我们可以用杨辉三角的递推来求C(k,n)
而这个a^n*b^m破东西可以用快速幂来求是吧!!!
#include <cstdio>
#include <iostream>
using namespace std;
const int mod=10007;
int tri[2001][2001];
int a,b,k,n,m;
void Yang_Hui_triangle()
{
tri[1][1]=1;
for(int i=2;i<=k+1;i++)
for(int j=1;j<=i;j++)
tri[i][j]=((tri[i-1][j-1])%mod+(tri[i-1][j])%mod)%mod;
}
int fast_pow(int x,int y)
{
int ans=1;
while(y)
{
if(y%2) ans=((ans)%mod*(x)%mod)%mod;
x=(x*x)%mod;
y/=2;
}
return ans;
}
int main()
{
scanf("%d%d%d%d%d",&a,&b,&k,&n,&m);
Yang_Hui_triangle();
int ma=(fast_pow(a%mod,n))%mod;
int mb=(fast_pow(b%mod,m))%mod;
printf("%d",((ma*mb)%mod*tri[k+1][n+1])%mod);
return 0;
}
方法二:用公式来计算C(k,n)
分解每个数,记录在c数组中
然后在乘起来
恩,很快
#include <cstdio>
#include <iostream>
using namespace std;
const int mod=10007;
int c[20000];
int a,b,k,n,m;
int cnt;
void tj(int x)
{
int i=2;
while(x>1)
{
while(x%i==0)
{
c[i]++;
x=x/i;
}
i++;
}
}
void screen(int x)
{
int i=2;
while(x>1)
{
while(x%i==0)
{
c[i]--;
x=x/i;
}
i++;
}
}
int js()
{
int ans=1;
for(int i=1;i<=k;i++)
for(int j=1;j<=c[i];j++)
ans=(ans%mod*i%mod)%mod;
return ans%mod;
}
int fast_pow(int x,int y)
{
int ans=1;
while(y)
{
if(y%2) ans=((ans)%mod*(x)%mod)%mod;
x=(x*x)%mod;
y/=2;
}
return ans;
}
int main()
{
scanf("%d%d%d%d%d",&a,&b,&k,&n,&m);
//Yang_Hui_triangle();
for(int i=k;i>=k-m+1;i--)
tj(i);
for(int i=m;i>=1;i--)
screen(i);
int ma=(fast_pow(a%mod,n))%mod;
int mb=(fast_pow(b%mod,m))%mod;
int last=js();
printf("%d",((ma*mb)%mod*last)%mod);
return 0;
}