10-29测试(QB DAY1)

49 篇文章 0 订阅
41 篇文章 0 订阅

立方数(cubic)
Time Limit:1000ms Memory Limit:128MB

题目描述
LYK定义了一个数叫“立方数”,若一个数可以被写作是一个正整数的3次方,则这个数就是立方数,例如1,8,27就是最小的3个立方数。
现在给定一个数P,LYK想要知道这个数是不是立方数。
当然你有可能随机输出一些莫名其妙的东西来骗分,因此LYK有T次询问~

输入格式(cubic.in)
第一行一个数T,表示有T组数据。
接下来T行,每行一个数P。

输出格式(cubic.out)
输出T行,对于每个数如果是立方数,输出“YES”,否则输出“NO”。

输入样例
3
8
27
28

输出样例
YES
YES
NO

数据范围
对于30%的数据p<=100。
对于60%的数据p<=10^6。
对于100%的数据p<=10^18,T<=100。

立方数2(cubicp)
Time Limit:1000ms Memory Limit:128MB

题目描述
LYK定义了一个数叫“立方数”,若一个数可以被写作是一个正整数的3次方,则这个数就是立方数,例如1,8,27就是最小的3个立方数。
LYK还定义了一个数叫“立方差数”,若一个数可以被写作是两个立方数的差,则这个数就是“立方差数”,例如7(8-1),26(27-1),19(27-8)都是立方差数。
现在给定一个数P,LYK想要知道这个数是不是立方差数。
当然你有可能随机输出一些莫名其妙的东西,因此LYK有T次询问~
这个问题可能太难了…… 因此LYK规定P是个质数!

输入格式(cubicp.in)
第一行一个数T,表示有T组数据。
接下来T行,每行一个数P。

输出格式(cubicp.out)
输出T行,对于每个数如果是立方差数,输出“YES”,否则输出“NO”。

输入样例
5
2
3
5
7
11

输出样例
NO
NO
NO
YES
NO

数据范围
对于30%的数据p<=100。
对于60%的数据p<=10^6。
对于100%的数据p<=10^12,T<=100。

T1离线做
T2立方差公式
质数(x-y)=1

T1

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <ctime>
#define ll long long
using namespace std;
const ll N=1e6+1;
struct node{
    ll x;
    int id;
}a[110];
bool f[110]; 
bool comp(node w,node e)
{
    return w.x<e.x;
}
int main()
{
    freopen("cubic.in","r",stdin);
    freopen("cubic.out","w",stdout);
    int n;
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
     scanf("%lld",&a[i].x),a[i].id=i;
    sort(a+1,a+n+1,comp);
    for(ll i=1;i<=N;i++)
     {
        ll tmp=i*i*i;
        if(tmp>a[n].x) continue;
        for(int j=1;j<=n&&a[j].x<=tmp;j++)
         if(!f[a[j].id])
          if(tmp==a[j].x)
           f[a[j].id]=1;
     }
     for(int i=1;i<=n;i++)
      if(f[i]) printf("YES\n");
      else printf("NO\n");
    //printf("%d",clock());  
    return 0; 
}

T2

#include <cstdio>
#include <iostream>
#include <cmath>
#include <algorithm>
#define ll long long
using namespace std;
struct node{
    ll x;
    int id;
}a[111];
ll prime[200000];
bool f[111]; 
int cnt,n;
ll maxd=0; 
void pre()
{
    for(ll i=0;i<=1e4;i++)
      {
        ll tmp=(i*i+(i-1)*i+(i-1)*(i-1));
        if(tmp>a[n].x) continue;
         for(int j=1;j<=n&&a[j].x<=tmp;j++)
          if(a[j].x==tmp)
           f[a[j].id]=1;
        //printf("%lld\n",tmp);
      }
}
bool comp(node w,node e)
{
    return w.x<e.x;
}
int main()
{
    //freopen("cubicp.in","r",stdin);
    //freopen("cubicp.out","w",stdout);
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
     scanf("%lld",&a[i].x),a[i].id=i;
    sort(a+1,a+n+1,comp);
    pre();
    for(int i=1;i<=n;i++)
      if(f[i]) printf("YES\n");
      else printf("NO\n");
    //printf("%lld",maxd);
    //printf("%lld",maxd);  
}  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值