立方数(cubic)
Time Limit:1000ms Memory Limit:128MB
题目描述
LYK定义了一个数叫“立方数”,若一个数可以被写作是一个正整数的3次方,则这个数就是立方数,例如1,8,27就是最小的3个立方数。
现在给定一个数P,LYK想要知道这个数是不是立方数。
当然你有可能随机输出一些莫名其妙的东西来骗分,因此LYK有T次询问~
输入格式(cubic.in)
第一行一个数T,表示有T组数据。
接下来T行,每行一个数P。
输出格式(cubic.out)
输出T行,对于每个数如果是立方数,输出“YES”,否则输出“NO”。
输入样例
3
8
27
28
输出样例
YES
YES
NO
数据范围
对于30%的数据p<=100。
对于60%的数据p<=10^6。
对于100%的数据p<=10^18,T<=100。
立方数2(cubicp)
Time Limit:1000ms Memory Limit:128MB
题目描述
LYK定义了一个数叫“立方数”,若一个数可以被写作是一个正整数的3次方,则这个数就是立方数,例如1,8,27就是最小的3个立方数。
LYK还定义了一个数叫“立方差数”,若一个数可以被写作是两个立方数的差,则这个数就是“立方差数”,例如7(8-1),26(27-1),19(27-8)都是立方差数。
现在给定一个数P,LYK想要知道这个数是不是立方差数。
当然你有可能随机输出一些莫名其妙的东西,因此LYK有T次询问~
这个问题可能太难了…… 因此LYK规定P是个质数!
输入格式(cubicp.in)
第一行一个数T,表示有T组数据。
接下来T行,每行一个数P。
输出格式(cubicp.out)
输出T行,对于每个数如果是立方差数,输出“YES”,否则输出“NO”。
输入样例
5
2
3
5
7
11
输出样例
NO
NO
NO
YES
NO
数据范围
对于30%的数据p<=100。
对于60%的数据p<=10^6。
对于100%的数据p<=10^12,T<=100。
T1离线做
T2立方差公式
质数(x-y)=1
T1
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <ctime>
#define ll long long
using namespace std;
const ll N=1e6+1;
struct node{
ll x;
int id;
}a[110];
bool f[110];
bool comp(node w,node e)
{
return w.x<e.x;
}
int main()
{
freopen("cubic.in","r",stdin);
freopen("cubic.out","w",stdout);
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%lld",&a[i].x),a[i].id=i;
sort(a+1,a+n+1,comp);
for(ll i=1;i<=N;i++)
{
ll tmp=i*i*i;
if(tmp>a[n].x) continue;
for(int j=1;j<=n&&a[j].x<=tmp;j++)
if(!f[a[j].id])
if(tmp==a[j].x)
f[a[j].id]=1;
}
for(int i=1;i<=n;i++)
if(f[i]) printf("YES\n");
else printf("NO\n");
//printf("%d",clock());
return 0;
}
T2
#include <cstdio>
#include <iostream>
#include <cmath>
#include <algorithm>
#define ll long long
using namespace std;
struct node{
ll x;
int id;
}a[111];
ll prime[200000];
bool f[111];
int cnt,n;
ll maxd=0;
void pre()
{
for(ll i=0;i<=1e4;i++)
{
ll tmp=(i*i+(i-1)*i+(i-1)*(i-1));
if(tmp>a[n].x) continue;
for(int j=1;j<=n&&a[j].x<=tmp;j++)
if(a[j].x==tmp)
f[a[j].id]=1;
//printf("%lld\n",tmp);
}
}
bool comp(node w,node e)
{
return w.x<e.x;
}
int main()
{
//freopen("cubicp.in","r",stdin);
//freopen("cubicp.out","w",stdout);
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%lld",&a[i].x),a[i].id=i;
sort(a+1,a+n+1,comp);
pre();
for(int i=1;i<=n;i++)
if(f[i]) printf("YES\n");
else printf("NO\n");
//printf("%lld",maxd);
//printf("%lld",maxd);
}