类型:最小费用流
建模真的绝了。
建模分析:
设修车师傅为A,正在修车B
修车B只会对修车师傅A在修完之后的修车人产生等待时间,而不会对修车师傅A修此车之前的修车人产生影响
设修完车B后还有K个人,那么修这个车所产生的等待时间为 K*time[B][A]
所以把每个修车师傅拆成N个人,表示第几次修的车。
然后搞搞源汇点就行了
Lougu
BZOJ
COGS
#include <cstdio>
#include <iostream>
#include <cstring>
#include <queue>
#define il inline
using namespace std;
const int inf=0x7fffffff;
const int maxm=110000;
int head[maxm],to[maxm*2],cap[maxm*2],net[maxm*2],cost[maxm*2];
int tim[400][400];
int cnt=1;
il void add(int x,int y,int c,int z){cnt++,to[cnt]=y,cost[cnt]=z,cap[cnt]=c,net[cnt]=head[x],head[x]=cnt;}
int flow[maxm],pre[maxm],id[maxm],dis[maxm],max_flow,min_cost;
bool vis[maxm];
queue <int> dl;
il bool BFS(int s,int t)
{
while(!dl.empty()) dl.pop();
memset(pre,-1,sizeof(pre));
memset(dis,127/3,sizeof(dis));
dis[s]=0,flow[s]=inf,pre[s]=0,vis[s]=1;
dl.push(s);
while(!dl.empty())
{
int x=dl.front();
dl.pop();
vis[x]=0;
for(int i=head[x];i;i=net[i])
{
int tmp=to[i];
if(cap[i]>0&&dis[tmp]>dis[x]+cost[i])
{
dis[tmp]=dis[x]+cost[i];
pre[tmp]=x;
id[tmp]=i;
flow[tmp]=min(flow[x],cap[i]);
if(!vis[tmp]) vis[tmp]=1,dl.push(tmp);
}
}
}
return pre[t]==-1?0:1;
}
il void change_cap(int s,int t,int x)
{
int now=t;
while(now!=s)
{
cap[id[now]]-=x,cap[id[now]^1]+=x;
now=pre[now];
}
}
void il get_ans(int s,int t)
{
max_flow=0,min_cost=0;
while(BFS(s,t))
{
//printf("%d\n",flow[t]);
max_flow+=flow[t],min_cost+=dis[t]*flow[t];
change_cap(s,t,flow[t]);
}
}
il void adx(int x,int y,int cax,int c)
{
add(x,y,cax,c),add(y,x,0,-c);
}
int main()
{
//freopen("scoi2007_repair.in","r",stdin);
//freopen("scoi2007_repair.out","w",stdout);
int m,n;
scanf("%d%d",&m,&n);
int s=0,t=10001;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%d",&tim[i][j]);
for(int i=1;i<=n;i++)
adx(s,i,1,0);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
for(int k=1;k<=n;k++)
adx(i,j*n+k,1,k*tim[i][j]);
for(int i=1;i<=m;i++)
for(int j=1;j<=n;j++)
adx(i*n+j,t,1,0);
get_ans(s,t);
return printf("%.2lf\n",(double)min_cost/n)*0;
}