类型:最小割
建模分析:
很明显,每个仓库就是节点,而车即为管道。
要求我们不能有从1->n的路径,就是把1,n分到两个集合去。
第一问我们把容量设为运输费用 套用最小割==最大流定理求出答案。
第二问我们直接把容量搞成1就可以求出最少停几辆车。
不用很麻烦的贪心了,Dinic足够快,跑两次也无所谓。
Luogu
#include <cstdio>
#include <iostream>
#include <queue>
#include <cstring>
#define il inline
using namespace std;
const int inf=0x7fffffff;
const int maxm=110000;
int head[maxm],to[maxm*2],cap[maxm*2],net[maxm*2],deep[maxm],cnt=1;
il void add(int x,int y,int c){cnt++,to[cnt]=y,cap[cnt]=c,net[cnt]=head[x],head[x]=cnt;}
queue <int> dl;
int from[maxm],go[maxm];
il bool BFS(int s,int t)
{
while(!dl.empty()) dl.pop();
memset(deep,-1,sizeof(deep));
dl.push(s),deep[s]=0;
while(!dl.empty())
{
int x=dl.front();dl.pop();
for(int i=head[x];i;i=net[i])
if(cap[i]>0&&deep[to[i]]==-1)
dl.push(to[i]),deep[to[i]]=deep[x]+1;
}
return deep[t]==-1?0:1;
}
int dfs(int now,int flow,int t)
{
if(now==t) return flow;
int w,used=0;
for(int i=head[now];i;i=net[i])
{
int v=to[i];
if(deep[v]==deep[now]+1&&cap[i])
{
w=dfs(v,min(flow-used,cap[i]),t);
cap[i]-=w;
cap[i^1]+=w;
used+=w;
if(used==flow) return flow;
}
}
if(!used) deep[now]=-1;
return used;
}
il int dinic(int s,int t)
{
int maxflow=0;
while(BFS(s,t)) maxflow+=dfs(s,inf,t);
return maxflow;
}
inline void adx(int x,int y,int cax)
{
add(x,y,cax),add(y,x,0);
}
il int read()
{
int x=0,w=1;
char ch=0;
while(ch<'0'||ch>'9')
{
if(ch=='-') w=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9')
x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*w;
}
int main()
{
int n=read(),m=read();
for(int i=1,x;i<=m;i++)
{
from[i]=read(),go[i]=read(),x=read();
adx(from[i],go[i],x);
}
printf("%d ",dinic(1,n));
memset(head,0,sizeof(head)),cnt=1;
for(int i=1,x;i<=m;i++)
adx(from[i],go[i],1);
printf("%d\n",dinic(1,n));
return 0;
}