题目描述:
给出含N个点的树,求任意两个点距离为3的倍数的概率.
题目分析:
emmmm.
本以为这道题目直接套用上题的做法就可以A了.
然而数据范围大了一倍.直接枚举的下场就是T成了SB
其实完全不用去对处理出来的数 N^2,枚举.
考虑 长度为 3 倍数的路径有 X条 %3为1的路径个数为 Y 条 %3余2 的路径个数为 Z 条
那么答案就是 X^2 + Y*Z*2
不要忘了容斥一下…
题目链接:
80代码:
// luogu-judger-enable-o2
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
const int maxm=20010;
int root=0,f[maxm],son[maxm],deep[maxm],d[maxm];
int head[maxm],to[maxm*2],net[maxm*2],cost[maxm*2],cnt,tot,k;
bool vis[maxm];
int sum,ans,n,q;
int flag=0;
inline void add(int x,int y,int c){cnt++,to[cnt]=y,cost[cnt]=c,net[cnt]=head[x],head[x]=cnt;}
int gcd(int a,int b)
{
return b?gcd(b,a%b):a;
}
void getroot(int now,int fa)
{
son[now]=1,f[now]=0;
for(int i=head[now];i;i=net[i])
if(to[i]!=fa&&!vis[to[i]])
{
getroot(to[i],now);
son[now]+=son[to[i]];
f[now]=std::max(f[now],son[to[i]]);
}
f[now]=std::max(f[now],sum-son[now]);
if(f[now]<f[root]||!root) root=now;
}
void getdeep(int now,int fa)
{
d[++tot]=deep[now];
for(int i=head[now];i;i=net[i])
if(!vis[to[i]]&&to[i]!=fa)
deep[to[i]]=cost[i]+deep[now],getdeep(to[i],now);
}
int calc(int x,int c,int f)
{
deep[x]=c;
tot=0;
getdeep(x,0);
//puts("");
for(int i=1;i<=tot;i++)
for(int j=1;j<=tot;j++)
if((d[i]+d[j])%3==0) ans+=f;
}
void slove(int now)
{
//printf("-%d-\n",now);
vis[now]=1;
calc(now,0,1);
for(int i=head[now];i;i=net[i])
if(!vis[to[i]])
calc(to[i],cost[i],-1),sum=son[to[i]],root=0,getroot(to[i],0),slove(root);
}
int main()
{
//freopen("ts.in","r",stdin);
//freopen("x2.out","w",stdout);
scanf("%d",&n);
for(int i=1;i<n;i++)
{
int u,v,c;
scanf("%d%d%d",&u,&v,&c);
add(u,v,c);
add(v,u,c);
}
sum=n;
root=0;
getroot(1,0);
slove(root);
int x=n*n,y=ans;
while(gcd(x,y)!=1)
{
int t=gcd(x,y);
x/=t,y/=t;
}
printf("%d/%d\n",y,x);
return 0;
}
AC 代码:
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
const int maxm=20010;
int root=0,f[maxm],son[maxm],deep[maxm],num[maxm];
int head[maxm],to[maxm*2],net[maxm*2],cost[maxm*2],cnt,tot,k;
bool vis[maxm];
int sum,ans,n,q;
int flag=0;
inline void add(int x,int y,int c){cnt++,to[cnt]=y,cost[cnt]=c,net[cnt]=head[x],head[x]=cnt;}
int gcd(int a,int b)
{
return b?gcd(b,a%b):a;
}
void getroot(int now,int fa)
{
son[now]=1,f[now]=0;
for(int i=head[now];i;i=net[i])
if(to[i]!=fa&&!vis[to[i]])
{
getroot(to[i],now);
son[now]+=son[to[i]];
f[now]=std::max(f[now],son[to[i]]);
}
f[now]=std::max(f[now],sum-son[now]);
if(f[now]<f[root]||!root) root=now;
}
void getdeep(int now,int fa)
{
//d[++tot]=deep[now];
num[deep[now]]++;
for(int i=head[now];i;i=net[i])
if(!vis[to[i]]&&to[i]!=fa)
deep[to[i]]=(cost[i]+deep[now])%3,getdeep(to[i],now);
}
int calc(int x,int c,int f)
{
num[0]=num[1]=num[2]=0;
deep[x]=c;
getdeep(x,0);
ans+=f*(num[0]*num[0]+num[1]*num[2]*2);
}
void slove(int now)
{
vis[now]=1;
calc(now,0,1);
for(int i=head[now];i;i=net[i])
if(!vis[to[i]])
calc(to[i],cost[i]%3,-1),sum=son[to[i]],root=0,getroot(to[i],0),slove(root);
}
int main()
{
//freopen("ts.in","r",stdin);
//freopen("x2.out","w",stdout);
scanf("%d",&n);
for(int i=1;i<n;i++)
{
int u,v,c;
scanf("%d%d%d",&u,&v,&c);
add(u,v,c);
add(v,u,c);
}
sum=n;
root=0;
getroot(1,0);
slove(root);
int x=n*n,y=ans;
while(gcd(x,y)!=1)
{
int t=gcd(x,y);
x/=t,y/=t;
}
printf("%d/%d\n",y,x);
return 0;
}