题目描述:
求Σ(i xor j)(1<=i<=n,1<=j<=m)
题目分析:
数位DP
对每一位数字考虑,假设横坐标和纵坐标为x和y,对于每一位的(x,y)都有4种情况。
令f/g[i][a][b][c]表示第i位上:
a=0:x小于n a=1:x等于n
b=0:y小于m b=1:y等于m
c=0:x^y大于k c=1:x^y等于k
f:符合要求的数的个数,g:符合要求的x^y的和。
程序里面是从(a,b,c)状态推到(A,B,C)状态,这个转移的确有点复杂。有一些状态是不符合条件的,比如当前第i位a=1表示前i位目前卡着n转移,这个时候如果n的第i+1位是0,x的第i+1位就不可能是1,否则这个新状态就大于n了。这个判断情况还是挺多的,但是刚好用一个位运算可以套出来。
题目链接:
Luogu 4067
BZOJ 4513
COGS 2220
Ac 代码:
又臭又长
#include <cstdio>
#include <iostream>
#include <cstring>
#define ll long long
#define F(i,j,n) for(int i=j;i<=n;i++)
#define D(i,j,n) for(int i=j;i>=n;i--)
ll f[62][2][2][2],g[62][2][2][2];
inline void work()
{
memset(f,0,sizeof(f)),memset(g,0,sizeof(g));
ll n,m,k,p;
g[61][1][1][1]=1;
scanf("%lld%lld%lld%lld",&n,&m,&k,&p);
for(int i=60;i>=0;i--)
{
int x=(n>>i)&1,y=(m>>i)&1,z=(k>>i)&1;
for(int a=0;a<=1;a++)
for(int b=0;b<=1;b++)
for(int c=0;c<=1;c++)
if(f[i+1][a][b][c]||g[i+1][a][b][c])
for(int xx=0;xx<=1;xx++)
for(int yy=0;yy<=1;yy++)
{
int zz=xx^yy;
if((a&&x<xx)||(b&&y<yy)||(c&&z>zz))continue;
int aa=(a&&x==xx),bb=(b&y==yy),cc=(c&&z==zz);
g[i][aa][bb][cc]=(g[i][aa][bb][cc]+g[i+1][a][b][c])%p;
f[i][aa][bb][cc]=(f[i][aa][bb][cc]+f[i+1][a][b][c]+((zz-z)+p)%p*((1ll<<i)%p)%p*g[i+1][a][b][c]%p)%p;
}
}
printf("%lld\n",f[0][0][0][0]);
}
int main()
{
//freopen("menci_table.in","r",stdin);
//freopen("menci_table.out","w",stdout);
int T;
scanf("%d",&T);
while(T--)
work();
return 0;
}