题目描述:
emmm.
又是个语死早系列.
我们有 N 个 机器人
每个机器人有个初始参量 X
表示 机器人初始位置
初始速度为 0
有 M 个 询问
首先给出一个时间参量 T
操作1 : 在 T 时间更改机器人 W ,W机器人速度变为 K 表示单位时间移动的距离
操作2 :询问 T 时间 走的最远的机器人距离原点的距离
题目分析:
很明显是一道超哥线段树的题目
将时间轴看做X轴 那么每个机器人的行走即为一个一次函数
但与之前的又有些不同
由于每个机器人的速度可以更改 所以其实每个机器人的行走函数是由很多函数组成的分段函数
而且机器人可以为速度可以为负数 那么我们就不能仅仅维护最大值啦
我分了两棵线段树分别维护 一颗线段树维护会导致过度的下放标记,T成SB
当然,我们也不可以直接对时间进行维护
时间最大到了
109
10
9
而 Q 仅有
105
10
5
要离散化一下
离散化时间,机器人是在接受到命令的时间才更改速度,对于之前的地方无影响,
导致一个机器人的在每个时间的函数曲线是一条条斜率不同的线段,最后为一条射线,注意分别维护
保证了时间递增 !
所以本题维护的是折线版的超哥!
细节是真的多!
另外一题,无脑全部long long T 成了 SB
慢慢改才A(大概是我写的太丑
题目链接:
Ac 代码:
/*
离散化时间,机器人是在接受到命令的时间才更改速度,对于之前的地方无影响,
导致一个机器人的在每个时间的函数曲线是一条条斜率不同的线段,注意分别维护
保证了时间递增
*/
#include <cstdio>
#include <iostream>
#include <algorithm>
#define ll long long
#define il inline
const int maxm=600005;
struct node{
int opt,id;
ll tim,k;
};
node q[maxm];
struct tree{
ll k,b;
int flag;
};
tree st[2][maxm<<2];
int last[maxm];
int tot,cnt,n,m;
ll ans1,ans2,nowb[maxm],nowk[maxm],tim[maxm];
il ll read1()
{
ll x=0,w=1;char ch=0;
while(ch<'0'||ch>'9'){if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*w;
}
il int read2()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9'){if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*w;
}
il int gettime(ll x)
{
return std::lower_bound(tim+1,tim+cnt+1,x)-tim;
}
double getx(ll k1,ll b1,ll k2,ll b2)
{
return (b1-b2)/(1.0*(k2-k1));
}
void ins1(int o,int l,int r,int ql,int qr,ll b,ll k)
{
int mid=(l+r)>>1;
if (ql<=l&&r<=qr)
{
if (!st[0][o].flag)
{
st[0][o].k=k,st[0][o].b=b,st[0][o].flag=1;
return;
}
ll tb=st[0][o].b,tk=st[0][o].k;
ll y1=b+k*tim[l],y2=tb+tk*tim[l];
ll y3=b+k*tim[r],y4=tb+tk*tim[r];
if (y1<=y2&&y3<=y4) return;
if (y1>=y2&&y3>=y4)
{
st[0][o].b=b,st[0][o].k=k;
return;
}
double xx=getx(k,b,tk,tb);
if (y1>=y2)
{
if (xx<=tim[mid]) ins1((o<<1),l,mid,ql,qr,b,k);
else ins1((o<<1)|1,mid+1,r,ql,qr,tb,tk),st[0][o].b=b,st[0][o].k=k;
}
else
{
if (xx>tim[mid]) ins1((o<<1)|1,mid+1,r,ql,qr,b,k);
else ins1((o<<1),l,mid,ql,qr,tb,tk),st[0][o].b=b,st[0][o].k=k;
}
return;
}
if (ql<=mid) ins1((o<<1),l,mid,ql,qr,b,k);
if (qr>mid) ins1((o<<1)|1,mid+1,r,ql,qr,b,k);
}
void ins2(int o,int l,int r,int ql,int qr,ll b,ll k)
{
int mid=(l+r)>>1;
if (ql<=l&&r<=qr)
{
if (!st[1][o].flag)
{
st[1][o].k=k,st[1][o].b=b,st[1][o].flag=1;
return;
}
ll tb=st[1][o].b,tk=st[1][o].k;
ll y1=b+k*tim[l],y2=tb+tk*tim[l];
ll y3=b+k*tim[r],y4=tb+tk*tim[r];
if (y1>=y2&&y3>=y4) return;
if (y1<=y2&&y3<=y4)
{
st[1][o].b=b,st[1][o].k=k;
return;
}
double xx=getx(k,b,tk,tb);
if (y1<=y2)
{
if (xx<=tim[mid]) ins2((o<<1),l,mid,ql,qr,b,k);
else ins2((o<<1)|1,mid+1,r,ql,qr,tb,tk),st[1][o].b=b,st[1][o].k=k;
}
else
{
if (xx>tim[mid]) ins2((o<<1)|1,mid+1,r,ql,qr,b,k);
else ins2((o<<1),l,mid,ql,qr,tb,tk),st[1][o].b=b,st[1][o].k=k;
}
return;
}
if (ql<=mid) ins2((o<<1),l,mid,ql,qr,b,k);
if (qr>mid) ins2((o<<1)|1,mid+1,r,ql,qr,b,k);
}
void askmax(int o,int l,int r,int ind)
{
if(st[0][o].flag) ans1=std::max(ans1,st[0][o].b+st[0][o].k*tim[ind]);
if(l==r) return;
int mid=(l+r)>>1;
if(ind<=mid) askmax((o<<1),l,mid,ind);
else askmax((o<<1)|1,mid+1,r,ind);
}
void askmin(int o,int l,int r,int ind)
{
if(st[1][o].flag) ans2=std::min(ans2,st[1][o].b+st[1][o].k*tim[ind]);
if(l==r) return;
int mid=(l+r)>>1;
if(ind<=mid) askmin((o<<1),l,mid,ind);
else askmin((o<<1)|1,mid+1,r,ind);
}
int main()
{
//freopen("test.in","r",stdin);
//freopen("x1.out","w",stdout);
n=read2(),m=read2();
char s[10];
for(int i=1;i<=n;i++) nowb[i]=read1(),nowk[i]=0,last[i]=0;
for(int i=1;i<=m;i++)
{
q[i].tim=tim[i]=read2();
scanf("%s",s);
if(s[0]=='c') q[i].opt=1,q[i].id=read1(),q[i].k=read2();
else q[i].opt=0;
}
tim[tot=m+1]=0;
std::sort(tim+1,tim+tot+1);
cnt=std::unique(tim+1,tim+tot+1)-tim-1;
for(int i=1;i<=m;i++)
if(q[i].opt)
{
int x=q[i].id;
int pre=gettime(last[x]);
int now=gettime(q[i].tim);
ins1(1,1,cnt,pre,now,nowb[x],nowk[x]);
ins2(1,1,cnt,pre,now,nowb[x],nowk[x]);
nowb[x]=nowb[x]+q[i].tim*(nowk[x]-q[i].k);//得出新的线段的截距
nowk[x]=q[i].k;
last[x]=q[i].tim;
}
for(int i=1;i<=n;i++)//最终插入一条从lasttime->inf的射线
{
int pre=gettime(last[i]);
ins1(1,1,cnt,pre,cnt,nowb[i],nowk[i]);
ins2(1,1,cnt,pre,cnt,nowb[i],nowk[i]);
}
//printf("Yes\n");
for(int i=1;i<=m;i++)
if(!q[i].opt)
{
ans1=ans2=0;
int askt=gettime(q[i].tim);
askmax(1,1,cnt,askt),askmin(1,1,cnt,askt);
printf("%lld\n",std::max(ans1,-ans2));
}
return 0;
}

本文介绍了一道关于机器人移动路径求解的问题,利用超哥线段树进行高效求解。通过离散化时间轴并维护每个机器人不同时段的速度变化,实现对最远距离的快速查询。
3636

被折叠的 条评论
为什么被折叠?



