[HEOI2016/TJOI2016] 排序

59 篇文章 0 订阅
39 篇文章 0 订阅

题目描述:

给出初始序列,
进行m次区间排序操作
输出q位置上的数字

题目分析:

暴力做法,疯狂排序
O(m(nlogn)) O ( m ∗ ( n l o g n ) )
据说可以80分…
正解:二分+线段树
考虑到查询的位置只有一个
我们先二分一个数
建立一颗01线段树
小于二分值的置为0,大于等于二分值的置为1
考虑 排序操作
对于一个区间的升序排列
先查询区间1的个数
我们可以直接把区间的0放到区间的前面,区间的1放到区间的后面
这样就是一个区间修改的操作
降序排列同理
然后查询Q位置的数为0,还是1,然后缩小二分边界
O(m(logn)2) O ( m ∗ ( l o g n ) 2 )

题目链接:

BZOJ 4552
Luogu 2824

Ac 代码:

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
const int maxm=31000; 
struct ask{
    int l,r,opt;
}q[maxm]; 
int a[maxm],b[maxm];
int n,m,Q;
namespace seg{
    struct node{
        int l,r,len;
        int sum,adx;
    }st[maxm<<4];
    inline void pushup(int o)
    {
        st[o].sum=st[(o<<1)].sum+st[(o<<1)|1].sum;
    }
    inline void col(int o,int tag)
    {
        st[o].adx=tag;
        st[o].sum=st[o].len*tag;
    }
    inline void pushdown(int o)
    {
        if(~st[o].adx)
        {
            col((o<<1),st[o].adx);
            col((o<<1)|1,st[o].adx);
            st[o].adx=-1;
        }
    }
    void build(int o,int l,int r)
    {
        st[o].l=l,st[o].r=r,st[o].len=(r-l+1);
        st[o].adx=-1;
        if(l>=r) 
        {
            st[o].sum=b[l];
            return;
        }
        int mid=(l+r)>>1;
        build((o<<1),l,mid),build((o<<1)|1,mid+1,r);
        pushup(o);
    }
    void modify(int o,int l,int r,int ql,int qr,int tag)
    {
        if(ql<=l&&r<=qr)
        {
            col(o,tag);
            return;
        }
        int mid=(l+r)>>1;
        pushdown(o);
        if(ql<=mid) modify((o<<1),l,mid,ql,qr,tag);
        if(qr>mid) modify((o<<1)|1,mid+1,r,ql,qr,tag);
        pushup(o);
    }
    int ask(int o,int l,int r,int ql,int qr)
    {
        if(ql<=l&&r<=qr) return st[o].sum;
        int ans1=0,ans2=0;
        int mid=(l+r)>>1;
        pushdown(o);
        if(ql<=mid) ans1=ask((o<<1),l,mid,ql,qr);
        if(qr>mid) ans2=ask((o<<1)|1,mid+1,r,ql,qr);
        return ans1+ans2;
    }
    int Ask(int o,int l,int r,int ind)
    {
        if(l>=r) return st[o].sum;
        int mid=(l+r)>>1;
        pushdown(o);
        if(ind<=mid) return Ask((o<<1),l,mid,ind);
        else return Ask((o<<1)|1,mid+1,r,ind);
    } 
}
inline bool check(int mid)
{
    for(int i=1;i<=n;i++)
     b[i]=(a[i]>=mid);
    seg::build(1,1,n);
    for(int i=1;i<=m;i++)
    {
        int l=q[i].l,r=q[i].r;
        int tmp=seg::ask(1,1,n,l,r);
        if(q[i].opt)
        {
            if(tmp)
             seg::modify(1,1,n,l,l+tmp-1,1);
            if(l+tmp<=r)
             seg::modify(1,1,n,l+tmp,r,0);
        }
        else
        {
            if(r-tmp>=l)
             seg::modify(1,1,n,l,r-tmp,0);
            if(tmp)
             seg::modify(1,1,n,r-tmp+1,r,1);
        }
    }
    return seg::Ask(1,1,n,Q);
}
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)
     scanf("%d",&a[i]);
    for(int i=1;i<=m;i++) 
     scanf("%d%d%d",&q[i].opt,&q[i].l,&q[i].r);
    scanf("%d",&Q);
    int l=1,r=n,ans;
    while(l<=r)
    {
        int mid=(l+r)>>1;
        if(check(mid)) ans=mid,l=mid+1;
        else r=mid-1;
    }
    printf("%d\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值