题目描述:
给出初始序列,
进行m次区间排序操作
输出q位置上的数字
题目分析:
暴力做法,疯狂排序
O(m∗(nlogn))
O
(
m
∗
(
n
l
o
g
n
)
)
据说可以80分…
正解:二分+线段树
考虑到查询的位置只有一个
我们先二分一个数
建立一颗01线段树
小于二分值的置为0,大于等于二分值的置为1
考虑 排序操作
对于一个区间的升序排列
先查询区间1的个数
我们可以直接把区间的0放到区间的前面,区间的1放到区间的后面
这样就是一个区间修改的操作
降序排列同理
然后查询Q位置的数为0,还是1,然后缩小二分边界
O(m∗(logn)2)
O
(
m
∗
(
l
o
g
n
)
2
)
题目链接:
Ac 代码:
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
const int maxm=31000;
struct ask{
int l,r,opt;
}q[maxm];
int a[maxm],b[maxm];
int n,m,Q;
namespace seg{
struct node{
int l,r,len;
int sum,adx;
}st[maxm<<4];
inline void pushup(int o)
{
st[o].sum=st[(o<<1)].sum+st[(o<<1)|1].sum;
}
inline void col(int o,int tag)
{
st[o].adx=tag;
st[o].sum=st[o].len*tag;
}
inline void pushdown(int o)
{
if(~st[o].adx)
{
col((o<<1),st[o].adx);
col((o<<1)|1,st[o].adx);
st[o].adx=-1;
}
}
void build(int o,int l,int r)
{
st[o].l=l,st[o].r=r,st[o].len=(r-l+1);
st[o].adx=-1;
if(l>=r)
{
st[o].sum=b[l];
return;
}
int mid=(l+r)>>1;
build((o<<1),l,mid),build((o<<1)|1,mid+1,r);
pushup(o);
}
void modify(int o,int l,int r,int ql,int qr,int tag)
{
if(ql<=l&&r<=qr)
{
col(o,tag);
return;
}
int mid=(l+r)>>1;
pushdown(o);
if(ql<=mid) modify((o<<1),l,mid,ql,qr,tag);
if(qr>mid) modify((o<<1)|1,mid+1,r,ql,qr,tag);
pushup(o);
}
int ask(int o,int l,int r,int ql,int qr)
{
if(ql<=l&&r<=qr) return st[o].sum;
int ans1=0,ans2=0;
int mid=(l+r)>>1;
pushdown(o);
if(ql<=mid) ans1=ask((o<<1),l,mid,ql,qr);
if(qr>mid) ans2=ask((o<<1)|1,mid+1,r,ql,qr);
return ans1+ans2;
}
int Ask(int o,int l,int r,int ind)
{
if(l>=r) return st[o].sum;
int mid=(l+r)>>1;
pushdown(o);
if(ind<=mid) return Ask((o<<1),l,mid,ind);
else return Ask((o<<1)|1,mid+1,r,ind);
}
}
inline bool check(int mid)
{
for(int i=1;i<=n;i++)
b[i]=(a[i]>=mid);
seg::build(1,1,n);
for(int i=1;i<=m;i++)
{
int l=q[i].l,r=q[i].r;
int tmp=seg::ask(1,1,n,l,r);
if(q[i].opt)
{
if(tmp)
seg::modify(1,1,n,l,l+tmp-1,1);
if(l+tmp<=r)
seg::modify(1,1,n,l+tmp,r,0);
}
else
{
if(r-tmp>=l)
seg::modify(1,1,n,l,r-tmp,0);
if(tmp)
seg::modify(1,1,n,r-tmp+1,r,1);
}
}
return seg::Ask(1,1,n,Q);
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
for(int i=1;i<=m;i++)
scanf("%d%d%d",&q[i].opt,&q[i].l,&q[i].r);
scanf("%d",&Q);
int l=1,r=n,ans;
while(l<=r)
{
int mid=(l+r)>>1;
if(check(mid)) ans=mid,l=mid+1;
else r=mid-1;
}
printf("%d\n",ans);
return 0;
}