[模板] 多项式求逆

版权声明:本文为博主原创文章,想转载就转吧! https://blog.csdn.net/qq_35914587/article/details/79950384

题目描述:

给定多项式F(x)
求一个多项式G(x)
满足F(x)G(x)1(mod xn)

题目分析:

通过倍增法及NTT求逆
总复杂度为NlogN
具体讲解请看Miskcoo的博客

题目链接:

Luogu 4238

Ac 代码:

#include <cstdio>
#include <algorithm>
#include <iostream>
#include <cmath>
#define ll long long 
const int maxm=2e6+100,mod=998244353,g=3,gi=332748118;
ll A[maxm],B[maxm],C[maxm];
int rev[maxm],bin[1<<21];
inline int fastpow(ll x,int y)
{
    ll ans=1;
    for(;y;y>>=1,x=(x*x)%mod) if(y&1) ans=(ans*x)%mod;
    return ans%mod;
}
inline void NTT(ll *a,int n,int f)
{
    int l=bin[n];
    for(int i=0;i<n;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(l-1));
    for(int i=0;i<n;i++) if(i<rev[i]) std::swap(a[i],a[rev[i]]);
    for(int i=1;i<n;i<<=1)
    {
        ll wn=fastpow((f==1)?g:gi,(mod-1)/(i<<1));
        for(int j=0;j<n;j+=(i<<1))
        {
            ll w=1;
            for(int k=0;k<i;k++,w=(w*wn)%mod)
            {
                ll x=a[j+k],y=(w*a[i+j+k])%mod;
                a[j+k]=(x+y)%mod;
                a[i+j+k]=(x-y+mod)%mod; 
            }
        }
    }
    if(f==-1) 
    {
        int inv=fastpow(n,mod-2);
        for(int i=0;i<n;i++) a[i]=(a[i]*inv)%mod;
    }
}
void getinv(ll *a,ll *b,int n)
{
    if(n==1)
    {
        b[0]=fastpow(a[0],mod-2);
        return;
    }
    getinv(a,b,(n+1)>>1);
    int m=1;
    for(;m<=n;m<<=1);
    for(int i=0;i<n;i++) C[i]=A[i];
    for(int i=n;i<m;i++) C[i]=0;
    NTT(C,m,1),NTT(B,m,1);
    for(int i=0;i<m;i++)
     B[i]=(2*B[i]%mod-C[i]*B[i]%mod*B[i]%mod+mod)%mod; 
    NTT(B,m,-1);
    for(int i=n;i<m;i++) B[i]=0;
}
int main()
{
    int n,m;
    for(int i=0;i<=19;i++) bin[1<<i]=i;
    scanf("%d",&n);
    for(m=1;m<=n;m<<=1);
    for(int i=0;i<n;i++) scanf("%lld",&A[i]);
    getinv(A,B,m);
    for(int i=0;i<n;i++) printf("%lld ",B[i]%mod);
    return 0;
}
阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页