[SDOI 2015] 序列计数

题目描述:

雾.

题目分析:

首先写出朴素的DP方程
DP[i][j]ij
DP[i+1][(jk)%m]=kDP[i][j]C[k] C[S]为集合S是否存在K
这个DP为O(m2n)
看到 m 的特殊性 为一个质数
引入一个原根的概念

对于一个素数p,他的一个原根g的0~p-2次幂在模p意义下取遍1~p-1的所有值
求原根可以先找出p-1的所有质因数,然后从2开始枚举,如果对任意的p-1的质因数p[i],x的(p-1)/p[i]次幂模p都不等于1,则x是p的一个原根

原根一般比较小,可以暴力找

那么上面的DP方程就可以写成

DP[i+1][(j+k)%(M1)]=kDP[i][j]C[k] 很明显就是一个卷积的形式了
套用多项式快速幂即可得到答案
最后复杂度为O(lognmlogm)

另外本题的模数是符合NTT形式的.

题目链接:

BZOJ 3992
COGS 1981
Luogu 3321

Ac 代码:

// luogu-judger-enable-o2
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#define int long long
const int mod=1004535809,g=3,gi=334845270;
const int maxm=8000*100; 
inline int fastpow(int x,int y,int p=mod)
{
    int ans=1;
    for(;y;y>>=1,x=(x*x)%p)
     if(y&1) ans=(ans*x)%p;
    return ans%p;
}
int rev[maxm],bin[maxm];
inline void NTT(int *a,int n,int f)
{
    int len=bin[n];
    for(int i=0;i<n;i++) rev[i]=((rev[i>>1]>>1)|((i&1)<<(len-1)));
    for(int i=0;i<n;i++) if(i<rev[i]) std::swap(a[i],a[rev[i]]);
    for(int i=1;i<n;i<<=1)
    {
        int wn=fastpow((f==1)?g:gi,(mod-1)/(i<<1));
        for(int j=0;j<n;j+=(i<<1))
        {
            int w=1;
            for(int k=0;k<i;k++,w=(wn*w)%mod)
            {
                int x=a[j+k],y=(w*a[i+j+k])%mod;
                a[j+k]=(x+y)%mod,a[i+j+k]=(x-y+mod)%mod;
            }
        }
    }
    if(f==-1)
    {
        int inv=fastpow(n,mod-2);
        for(int i=0;i<n;i++) a[i]=(a[i]*inv)%mod;
    }
}
int n,m,x,s,G,H[maxm],C[maxm],vis[maxm];//H为数对应的幂次,C为存在性 
int ans[maxm];
inline void init()
{
    for(int i=1;i<m;i++)
    {
        memset(vis,0,sizeof(vis));
        int flag=1;
        for(int j=1;j<m&&flag;j++)
        {
            int tmp=fastpow(i,j,m);
            if(vis[tmp]) flag=0;
            vis[tmp]=1;
        }
        if(flag)
        {
            G=i;
            break;
        }
    }
    //printf("%lld\n",G);
    for(int i=0;i<m;i++) H[fastpow(G,i,m)]=i;
    for(int i=0;i<18;i++) bin[1<<i]=i;
}
inline void getans(int *a,int n,int y)
{
    y--;
    for(int i=0;i<n;i++) ans[i]=a[i];
    while(y)
    {
        if(y&1)
        {
            NTT(ans,n,1),NTT(a,n,1);
            for(int i=0;i<n;i++) ans[i]=(ans[i]*a[i])%mod;
            NTT(a,n,-1),NTT(ans,n,-1);
            for(int i=m-1;i<n;i++) ans[i%(m-1)]=(ans[i%(m-1)]+ans[i])%mod,ans[i]=0;
        }
        NTT(a,n,1);
        for(int i=0;i<n;i++) a[i]=(a[i]*a[i])%mod;
        NTT(a,n,-1);
        for(int i=m-1;i<n;i++) a[i%(m-1)]=(a[i%(m-1)]+a[i])%mod,a[i]=0;
        y/=2;
    }
}
signed main()
{
    //freopen("sdoi2015_sequence.in","r",stdin);
    //freopen("sdoi2015_sequence.out","w",stdout);
    scanf("%lld%lld%lld%lld",&n,&m,&x,&s);
    init();

    for(int i=1;i<=s;i++)
    {
        int num;
        scanf("%lld",&num);
        if(num) C[H[num]%(m-1)]=1;
    }
    int Len;
    for(Len=1;Len<=2*m;Len<<=1);
    getans(C,Len,n);
    printf("%lld\n",ans[H[x]%(m-1)]);
    return 0;
}
阅读更多
版权声明:本文为博主原创文章,想转载就转吧! https://blog.csdn.net/qq_35914587/article/details/79976976
个人分类: 题目分析 FFT
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭