[HZOI 2015] 疯狂机器人

91 篇文章 1 订阅
4 篇文章 0 订阅

题目描述:

QAQ…

题目分析:

既然我们想要回到起点,那么就得让上下步数一样多,左右步数一样多,并且任何时刻上的步数比下的步数多,右的步数比左的步数多,然后你就会发现,这个模型不就是卡特兰数列的进出栈模型嘛…
设F(i) 表示 走 i 步回到起点且这 i 步里不包含不行走步数的方案数
定义 g(i) 表示只能上下走,不能左右和不走,回到起点的方案数
显然当 i为偶数是 g ( i ) = C a t a l a n ( i 2 ) g(i)=Catalan(\frac{i}{2}) g(i)=Catalan(2i)
当 i 为奇数是 g ( i ) = 0 g(i)=0 g(i)=0
显然 上下走 i 步 方案与 左右走 i 步的方案一致
那么 F ( i ) = ∑ j = 0 i g ( i ) ∗ g ( i − j ) ∗ C ( i , j ) F(i)=\sum_{j=0}^{i}g(i)*g(i-j)*C(i,j) F(i)=j=0ig(i)g(ij)C(i,j)
把组合数展开可得
F ( i ) = i ! ∗ ∑ j = 0 i g ( j ) j ∗ g ( i − j ) i − j F(i)=i!*\sum_{j=0}^{i}\frac{g(j)}{j}*\frac{g(i-j)}{i-j} F(i)=i!j=0ijg(j)ijg(ij) 后面的部分就是个卷积形式了,上NTT快速统计即可
最后的答案显然是 ∑ i = 0 n f ( i ) ∗ c ( n , i ) \sum_{i=0}^{n} f(i)*c(n,i) i=0nf(i)c(n,i)
这里用的卡特兰数列计算公式是 C a t a l a n ( i ) = C ( 2 n , n ) − C ( 2 n , n − 1 ) Catalan(i)=C(2n,n)-C(2n,n-1) Catalan(i)=C(2n,n)C(2n,n1)

题目链接:

COGS 2287

Ac 代码:

#include <cstdio>
#include <algorithm>
#include <iostream>
#include <cstring>
#define int long long
const int maxm=300005;
const int mod=998244353;
int Catalan[maxm],g[maxm],f[maxm],mul[maxm],rev[maxm],l;
inline int fastpow(int x,int y)
{
	int ans=1;
	for(;y;y>>=1,x=(x*x)%mod) if(y&1) ans=(ans*x)%mod;
	return ans;
}
inline int C(int n,int m)
{
	int x=mul[n],y=(mul[m]*mul[n-m])%mod;
	int inv=fastpow(y,mod-2);
	return (x*inv)%mod;
}
inline void NTT(int *a,int n,int f)
{
    for(int i=0;i<n;i++) rev[i]=((rev[i>>1]>>1)|((i&1)<<(l-1)));
	for(int i=0;i<n;i++) if(i<rev[i]) std::swap(a[i],a[rev[i]]);
	for(int i=1;i<n;i<<=1)
	{
		int wn=fastpow(3,~f?(mod-1)/(i<<1):(mod-1)-(mod-1)/(i<<1));
	    for(int j=0;j<n;j+=(i<<1))
	    {
	    	int w=1;
	    	for(int k=0;k<i;k++,w=(w*wn)%mod)
	    	{
	    		int x=a[j+k],y=(a[i+j+k]*w)%mod;
	    		a[j+k]=(x+y)%mod,a[i+j+k]=(x-y+mod)%mod;
	    	}
	    }
	}
	if(f==-1)
	{
		int inv=fastpow(n,mod-2);
		for(int i=0;i<n;i++) a[i]=(a[i]*inv)%mod;
	}
}
int n;
signed main()
{
	//freopen("crazy_robot.in","r",stdin);
	//freopen("crazy_robot.out","w",stdout);
	mul[0]=1;
	for(int i=1;i<maxm;i++) mul[i]=(mul[i-1]*i)%mod;
	scanf("%lld",&n);
	int m;
	for(m=1;m<=2*n;m<<=1) l++;
	for(int i=2;i<=n;i+=2) Catalan[i]=(C(i,i/2)-C(i,i/2-1)+mod)%mod;
	for(int i=0;i<=n;i++) g[i]=(Catalan[i]*fastpow(mul[i],mod-2))%mod;
	g[0]=1;
	NTT(g,m,1);
	for(int i=0;i<m;i++) f[i]=((g[i]*g[i])%mod)%mod;
	NTT(f,m,-1);
	for(int i=0;i<=n;i++) f[i]=(f[i]*mul[i])%mod;
	int ans=0;
	for(int i=0;i<=n;i++) ans=(ans+(f[i]*C(n,i))%mod)%mod;
	printf("%lld\n",ans);
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值