机器学习与深度学习
机器学习与深度学习
沉浮一湘蕉
心若沉浮,浅笑安然。
展开
-
机器学习与深度学习入门篇
一、机器学习1.机器学习是什么?机器学习是将无序数据转换为价值的方法。2.机器学习的价值从数据中抽取规律,并预测未来。3.机器学习的应用(1)分类问题图像识别、垃圾邮件识别。(2)回归问题股价预测、房价预测。(3)排序问题点击率预估、推荐。(4)生成问题图像生产、图像风格转换、图像文字描述生成。4.机器学习流程5.机器学习岗位职责(1)数据处理(采集+去噪)(2)模型训练(特征+模型)(3)模型评估与优化(MSE、F1-score、AUC+调参)(4)模型应用(A/B原创 2022-04-27 19:26:06 · 2352 阅读 · 0 评论 -
泰坦尼克号kaggle预测代码
#titanicimport numpy as npimport pandas as pd ##读取查看数据from sklearn.tree import DecisionTreeClassifier ##决策树import matplotlib.pyplot as plt ##绘图from sklearn.model_selection import GridSearchCV,train_test_split,cross_val_score ##网格搜索调参###读入数据data=p.原创 2021-03-12 19:01:39 · 343 阅读 · 0 评论 -
GRU简单代码
双向循环网络:原创 2021-03-09 13:57:27 · 3696 阅读 · 0 评论 -
residual net简单实现代码
原创 2021-03-08 16:14:49 · 346 阅读 · 1 评论 -
1×1卷积核googleNet简单代码
原创 2021-03-08 14:41:11 · 428 阅读 · 0 评论 -
RNN循环神经网络简单代码
原创 2021-03-08 14:14:26 · 1620 阅读 · 0 评论 -
卷积核
原创 2021-03-07 16:24:41 · 200 阅读 · 0 评论 -
Mini-Batch简单实现代码
原创 2021-03-07 13:52:53 · 1053 阅读 · 0 评论 -
pytorch线性模型、逻辑回归二分类模型简单代码
多维逻辑回归:原创 2021-03-06 18:46:25 · 209 阅读 · 0 评论 -
简单线性模型、梯度下降、随机梯度下降算法代码
原创 2021-03-06 14:10:17 · 153 阅读 · 0 评论 -
随机森林调参
原创 2021-02-28 16:34:51 · 1071 阅读 · 0 评论 -
数据类型及常用统计变量
原创 2021-01-20 14:51:07 · 392 阅读 · 0 评论 -
TensorFlow镜像安装(Anaconda)
1.安装好Anaconda后,打开Anaconda Prompt。2.检查anaconda安装:在anaconda输入 conda --version.3.检查python版本:在anaconda输入python.4.新建一个python3.7的环境tensorflow:conda create -n tensorflow python=3.75.激活新建的环境:activate tensorflow6.先退出当前环境:conda deactivate7.确认一下,新建环境已经添原创 2021-01-19 16:06:07 · 3751 阅读 · 0 评论 -
pycharm使用pandas学习笔记
#encoding=utf-8import numpy as npimport pandas as pdfrom pylab import *def main(): # #Data Structure # s=pd.Series([i*2 for i in range(1,11)])#一维数组 # print(type(s)) # dates=pd.date_range("20170301",periods=8) # df=pd.DataFrame(np..原创 2021-01-15 16:20:23 · 1427 阅读 · 0 评论 -
ECharts实现简单柱状图(标注)
option = { title: { text: '某日部分患者病历报告', subtext: '纯属虚构' }, legend: {}, tooltip: {}, dataset: { source: [ ['product', 'R', 'K', 'MA'], ['张三', 43.3, 85.8, 93.7], ['李四', 83.1,...原创 2021-01-13 19:53:05 · 932 阅读 · 0 评论 -
echarts柱状图(多色柱状图+标注)
option = { title: { text: '2021年1月13日张三病历', subtext: '纯属虚构' }, tooltip: { }, xAxis: { type: 'category', data: ['R', 'K', 'MA', 'G', 'EPL', 'LY30', 'Angle'] }, yAxis: { type: 'value' ...原创 2021-01-13 19:47:17 · 913 阅读 · 0 评论 -
ECharts实现简单柱状图(标注+基线)
option = { title: { text: '某日部分患者病历报告', subtext: '纯属虚构' }, legend: {}, tooltip: {}, dataset: { source: [ ['product', 'R', 'K', 'MA'], ['张三', 43.3, 85.8, 93.7], ['李四', 83.1, 7.原创 2021-01-13 15:00:20 · 1207 阅读 · 0 评论 -
机器学习算法扫盲篇
1.概览:2.sklearn算法选择:1)结构:由图中,可以看到库的算法主要有四类:分类,回归,聚类,降维。(2)图片中隐含的操作流程:这个流程图代表:蓝色圆圈内是判断条件,绿色方框内是可以选择的算法。你可以根据自己的数据特征和任务目标去找到一条自己的操作路线,一步步做就好了。3.kaggle数据挖掘注意事项:『对数据的认识太重要了!』 『数据中的特殊点/离群点的分析和处理太重要了!』 『特征工程(feature engineering)太重要了!』 『模型融合(mod原创 2020-12-30 19:49:28 · 1484 阅读 · 0 评论 -
Kaggle入门篇
1.在官网注册账号:https://www.kaggle.com/,本人用谷歌浏览器申请了一个账号,然后用谷歌账号注册了一个账号,普通邮箱注册遇到没有反应的问题,然后换成谷歌账号很easy就注册完成。2.Kaggle上的项目竞赛分成下面4个最常见的类别1)Featured:这些通常是由公司、组织甚至政府赞助的,奖金池最大。2)Research:这些是研究方向的竞赛,只有很少或没有奖金。它们也有非传统的提交流程。3)Recruitment:这些是由想要招聘数据科学家的公司赞助的。目前仍然相原创 2020-12-30 15:03:46 · 455 阅读 · 0 评论