史上最易懂AP、mAP计算解析

        博主最近也有在接触目标检测相关的相关研究,其中有一个环节博主卡了很久,那就是AP的计算过程。相信大家都看到过很多关于AP的介绍,但是都很空泛,而且大家的答案都是千篇一律,我们只能看个大概,但是一到看代码或者是要自己写代码的时候具体怎么操作就不会了。博主在学习的时候看到一篇英文的关于AP的介绍十分的详细,最最最关键的是它还有例子。这里放上原文的链接:https://github.com/rafaelpadilla/Object-Detection-Metrics 然后博主在这里结合自己的理解给大家通俗易懂的讲讲AP到底怎么算不是想其他资料一样讲写套话,看的大家云里雾里的。

一、IOU

简单一点说呢就是我们要求两个框的IOU就是用两个框的重合部分除以连个框的并集,可以看上面的第二个公式就很明了了,计算的时候要注意两个框的并集的面积等于二者的面积之和减去二者的交集的面积。

二、True Positive, False Positive, False Negative and True Negative

True Positive (TP):一个正确的定位结果,就是你预测的框和我们的groudtruth之间的IOU是可以大于我们规定的阈值的,我们一般取这个阈值都是0.5

False Positive (FP):就是一个错误的结果,就是你预测的这个框和groundtruth的IOU是小于阈值的

False Negative (FN): 就是我们本来这里有一个物体的,所以我们这个地方应该有个框,但是你没预测出来,那么这个groundtruth对于你的模型来讲就是一个FN

True Negative (TN):这个就是我们这个groundtru找到了一个和它的IOU大于阈值的预测框,那么对于这个ground就是认为被成功的检测出来了。

三、Precision和Recall

首先是precision就是用TP除以总的detection的数目(你预测处来的框的数目),注意我们在计算AP的时候要首先要计算precision。在我们实际计算的时候是一个序列,如果我们一共有N个detections那么它就是一个长度维N的序列,我们计算Precision的时候是针对某一个类别的,首先确定一个类别,然后对这个类别的所有的检测结果按他们得到的分数也就是confidence进行从大大小排序,然后我们每次取一个结果出来不管这个detection是TP还是FP,all detections都要加1也就是在实际计算的过程中上述的公式中的all detections是一个递增变化的数,每次取一个框就加1,然后每次取一个框出来如果这个框是TP那么TP的数目就加1,

评论 55
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值