Data structure [树链剖分] [莫队] [分块]

链接

2020牛客暑期多校训练营(第六场)
https://ac.nowcoder.com/acm/contest/5671/D

题意

给定一个大小为 n n n 的树, m m m 次询问,查询 x x x 的子树内编号在 [ l , r ] [l,r] [l,r] l c a = x lca=x lca=x 的点对数。 n , m ≤ 200000 n,m≤200000 n,m200000

分析

问题可以转化为,查询 x x x 的子树内在 [ l , r ] [l,r] [l,r] 内的点对数,减去 x x x 的每个儿子的子树在 [ l , r ] [l,r] [l,r] 内的点对数。而求点对数就等价于求点个数。

对树进行树链剖分,一个询问就转换为求 x x x 子树内 [ l , r ] [l,r] [l,r] 的个数,以及重儿子和各个轻儿子的子树内 [ l , r ] [l,r] [l,r] 的个数。

原始思路

计算 x x x 点和 x x x 的重儿子的贡献可以用线段树合并:树上每一个节点上开一棵线段树,每个点合并所有儿子的线段树,在线段树上查询,复杂度 O ( n ∗ l o g ( n ) ) O(n*log(n)) O(nlog(n))

用莫队计算每个询问的轻儿子的贡献,用莫队维护编号区间。
每当莫队的左右端点移动时,会添加或删除一个编号的点,这个点到根的路径上最多只会经过 l o g ( n ) log(n) log(n) 条轻边,因此这个点只会影响 l o g ( n ) log(n) log(n) 个点上的询问。
我们只需在每条重链的 t o p top top 上记录子树内的个数,在 t o p top top 的父亲上记录轻边的总贡献。

这样整体的复杂度为 O ( n n ∗ l o g ( n ) ) O(n\sqrt{n}*log(n)) O(nn log(n))

考虑优化

可以发现,整体的复杂度主要集中在莫队端点移动时的跳链上,我们考虑减少跳链的次数。
对于一个点,将子树大小前 O ( n ) O(\sqrt{n}) O(n ) 大的儿子都当作重儿子,那么轻儿子就是除了这些重儿子以外的所有儿子。
这样每次经过一条轻边,子树的大小会增大 O ( n ) O(\sqrt{n}) O(n ) 倍,于是只会经过 O ( 1 ) O(1) O(1) 条轻边,因此计算轻儿子贡献的复杂度就变为 O ( n n ) O(n\sqrt{n}) O(nn )

再计算重儿子的贡献,问题就变成查询 O ( n n ) O(n\sqrt{n}) O(nn ) 次在某个子树内,编号在某个区间内的元素个数。
由于只有 n n n 个点,我们可以用一个 O ( n ) O(\sqrt{n}) O(n ) 修改—— O ( 1 ) O(1) O(1) 查询的分块来维护编号在某个区间内的元素个数。
具体做法是:在dfs时,容器中存入所有遍历过的点。

  1. 进入一个点时,将这个点上所有询问的贡献减去在容器中查询的数量。
  2. 将当前的点加入到容器中,然后继续遍历子树。
  3. 离开一个点时,将这个点上所有询问的贡献加上在容器中查询的数量。
    最终,总时间复杂度为 O ( n n ) O(n\sqrt{n}) O(nn ),总空间复杂度为 O ( n ) O(n) O(n)

代码

#include"bits/stdc++.h"
using namespace std;
typedef long long ll;
typedef double db;
template<class T>inline void MAX(T &x,T y){if(y>x)x=y;}
template<class T>inline void MIN(T &x,T y){if(y<x)x=y;}
template<class T>inline void rd(T &x){
	x=0;char o,f=1;
	while(o=getchar(),o<48)if(o==45)f=-f;
	do x=(x<<3)+(x<<1)+(o^48);
	while(o=getchar(),o>47);
	x*=f;
}
const int M=2e5+5;
const int S=10;
int n,m,rt,sz[M],fa[M];
vector<int>edge[M];
struct node{
	int l,r,id;
};
vector<node>vi[M];
void dfs(int x,int f){
	fa[x]=f;
	sz[x]=1;
	for(int i=0;i<edge[x].size();i++){
		int y=edge[x][i];
		if(y==f)continue;
		dfs(y,x);
		sz[x]+=sz[y];
	}
	sort(edge[x].begin(),edge[x].end(),[](int x,int y){return sz[x]>sz[y];});
}
struct BLOCK{
	static const int S=400;
	static const int K=M/S+5;
	int big[K],small[M],bel[M],L[K],R[K];
	BLOCK(){
		for(int i=1;i<M;i++)bel[i]=(i-1)/S+1;
		for(int i=1;i<K;i++)L[i]=1+(i-1)*S,R[i]=i*S;
	}
	void insert(int x){
		for(int i=1;i<=bel[x];i++)big[i]++;
		for(int i=L[bel[x]];i<=x;i++)small[i]++;
	}
	int query(int l,int r){
		return big[bel[l]+1]+small[l]-big[bel[r+1]+1]-small[r+1];
	}
}block;
struct MODUI{
	int res,cnt[M];
	void clear(int tot){res=0;for(int i=1;i<=tot;i++)cnt[i]=0;}
	void insert(int x){res+=cnt[x]++;}
	void erase(int x){res-=--cnt[x];}
	inline int query(){return res;}
}modui;
int now1,now2,cnt1[M],cnt2[M],id[M],reid[M],dfsid;
ll ans[M];
pair<int,int>color[M];
void chain(int x,int top){
	reid[id[x]=++dfsid]=x;
	int st1=now1,st2=now2;
	for(int i=0;i<vi[x].size();i++)
		cnt1[now1++]=-block.query(vi[x][i].l,vi[x][i].r);
	if(top!=x)for(int i=0,len=vi[fa[x]].size();i<len;i++)
		cnt2[now2++]=-block.query(vi[fa[x]][i].l,vi[fa[x]][i].r);
	block.insert(x);
	for(int i=0;i<edge[x].size();i++){
		int y=edge[x][i];
		if(y==fa[x])continue;
		if(i<S)chain(y,top);
		else chain(y,y);
	}
	for(int i=0;i<vi[x].size();i++){
		cnt1[st1+i]+=block.query(vi[x][i].l,vi[x][i].r);
		ans[vi[x][i].id]+=1ll*cnt1[st1+i]*(cnt1[st1+i]-1)/2;
	}
	if(top!=x)for(int i=0,len=vi[fa[x]].size();i<len;i++){
		cnt2[st2+i]+=block.query(vi[fa[x]][i].l,vi[fa[x]][i].r);
		ans[vi[fa[x]][i].id]-=1ll*cnt2[st2+i]*(cnt2[st2+i]-1)/2;
	}
	now1=st1,now2=st2;
	if(edge[x].size()>=S){
		int all=0,tot=0;
		for(int i=S;i<edge[x].size();i++){
			int y=edge[x][i];
			if(y==fa[x])continue;
			tot++;
			for(int j=id[y];j<id[y]+sz[y];j++)color[++all]=make_pair(reid[j],tot);
		}
		sort(color+1,color+all+1);
		for(int i=0;i<vi[x].size();i++){
			vi[x][i].l=lower_bound(color+1,color+all+1,make_pair(vi[x][i].l,0))-color;
			vi[x][i].r=upper_bound(color+1,color+all+1,make_pair(vi[x][i].r,233333))-color-1;
		}
		int S=sqrt(all)+1;
		sort(vi[x].begin(),vi[x].end(),[&](node &a,node &b){
			if(a.l/S!=b.l/S)return a.l/S<b.l/S;
			return a.r<b.r;
		});
		int L=1,R=0;
		modui.clear(tot);
		for(int i=0;i<vi[x].size();i++){
			int l=vi[x][i].l,r=vi[x][i].r,id=vi[x][i].id;
			if(l>r)continue;
			while(R<r)modui.insert(color[++R].second);
			while(L>l)modui.insert(color[--L].second);
			while(R>r)modui.erase(color[R--].second);
			while(L<l)modui.erase(color[L++].second);
			ans[id]-=modui.query();
		}
	}
}
int main(){
#ifndef ONLINE_JUDGE
	freopen("jiedai.in","r",stdin);
//	freopen("jiedai.out","w",stdout);
#endif
	rd(n),rd(m),rd(rt);
	for(int i=1;i<n;i++){
		int a,b;
		rd(a),rd(b);
		edge[a].push_back(b);
		edge[b].push_back(a);
	}
	for(int i=1;i<=m;i++){
		int l,r,x;
		rd(l),rd(r),rd(x);
		vi[x].push_back((node){l,r,i});
	}
	dfs(rt,0);
	chain(rt,rt);
	for(int i=1;i<=m;i++)printf("%lld\n",ans[i]);
	return 0;
}
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值