Hadoop由哪几部分组成?

Hadoop是一个分布式处理框架,主要包括HDFS、MapReduce、Hive、HBase等组件。HDFS提供分布式文件系统,MapReduce用于大规模数据处理,Hive提供SQL-like查询功能,HBase是分布式数据库,而ZooKeeper则负责分布式协调。此外,还包括Avro的数据序列化、Chukwa的数据采集、Pig的数据流语言和Mahout的机器学习库。
摘要由CSDN通过智能技术生成

Hadoop是一个能够对大量数据进行分布式处理的软件框架,以一种可靠、高效、可伸缩的方式进行数据处理,其有许多元素构成,以下是其组成元素:

1.Hadoop Common:Hadoop体系最底层的一个模块,为Hadoop各子项目提供各种工具,如:配置文件和日志操作等。

2.HDFS:分布式文件系统,提供高吞吐量的应用程序数据访问,对外部客户机而言,HDFS 就像一个传统的分级文件系统。可以创建、删除、移动或重命名文件,等等。但是HDFS 的架构是基于一组特定的节点构建的(参见图 1),这是由它自身的特点决定的。这些节点包括 NameNode(仅一个),它在 HDFS 内部提供元数据服务;DataNode,它为 HDFS 提供存储块。由于仅存在一个 NameNode,因此这是 HDFS 的一个缺点(单点失败)。

存储在 HDFS 中的文件被分成块,然后将这些块复制到多个计算机中(DataNode)。这与传统的 RAID 架构大不相同。块的大小(通常为 64MB)和复制的块数量在创建文件时由客户机决定。NameNode 可以控制所有文件操作。HDFS 内部的所有通信都基于标准的 TCP/IP 协议。

3.MapReduce:一个分布式海量数据处理的软件框架集计算集群。

4.Avro :doug cutting主持的RPC项目,主要负责数据的序列化。有点类似Google的protobuf和Facebook的thrift。avro用来做以后hadoop的RPC,使hadoop的RPC模块通信速度更快、数据结构更紧凑。

5.Hive :类似CloudBase,也是基于hadoop分布式计算平台上

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值