- 博客(2)
- 收藏
- 关注
原创 机器学习模型选择
机器学习既是一门科学,也是一种艺术。纵观各类机器学习算法,并没有一种普适的解决方案或方法。事实上,有几个因素会影响你对机器学习算法的选择。 有些问题是非常特别的,需要用一种特定的解决方法。例如,如果你对推荐系统有所了解,你会发现它是一类很常用的机器学习算法,用来解决一类非常特殊的问题。而其它的一些问题则非常开放,可能需要一种试错方法(例如:强化学习)。监督学习、分类、回归等问题都是非常开放的,可以被用于异常检测或建立更加广泛的预测模型。 此外,我们在选择机器学习算法时所做出的一些决定与算法的优化或技术层
2021-11-29 21:16:41 1511
原创 数据预处理(极为全面)
基础概念 特征工程是通过对原始数据的处理和加工,将原始数据属性通过处理转换为数据特征的过程,属性是数据本身具有的维度,特征是数据中所呈现出来的某一种重要的特性,通常是通过属性的计算,组合或转换得到的。比如主成分分析就是将大量的数据属性转换为少数几个特征的过程。某种程度而言,好的数据以及特征往往是一个性能优秀模型的基础。 既然叫特征工程,自然涵盖了很多内容,而其中涉及到的比较重要的部分是特征的处理及选择。 特征处理包含: 数据清洗 数据规范化 特征衍生与提取 特征选择包含:
2021-11-29 21:10:48 867
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人