Python的装饰器

装饰器相当于实现了装饰器模式。在不修改已有函数定义的情况下,增加函数的功能。一个最经典的例子:

# 定义一个输出日志的装饰器
def logging(func):
    def wrapper(*args, **kw):
        print("I am logging %s" % func.__name__)
        return func(*args, **kw)

    return wrapper

那么,一个最简单的调用例子是:

def foo(x, y):
    return x + y


foo = logging(foo)
print(foo(1, 2))

上述代码中,foo相当于被重新赋值为wrapper函数,然后继续被调用,同时因为wrapper内部返回原来的foo函数,那么在这里就直接返回原来foo的返回值了,这样就可以即满足调用原来函数的效果,又可以在不改变原来函数代码情况下,输出日志了。

上述的代码可以简化为:

@logging
def foo(x, y):
	return x + y

print(foo(x, y))

带有参数的装饰器:

def log(level):
    def wrapper(func):
        def inner_wrapper(*args, **kwargs):
            print("DEBUG LEVEL: (%s) on func: %s" % (level, func.__name__))
            return func(*args, **kwargs)

        return inner_wrapper

    return wrapper


@log(level='level 1')
def foo(x, y):
    return x + y


print(foo(1, 2))

下面解释下初学时不明白的几个地方:
1. 为什么logging内部还要定义一个wrapper,直接返回func()不行吗?
直接返回的方式是有局限性的,举个例子:

def log(func):
    print("I am log %s" % func.__name__)
    return func()

那么,这种方式的调用下,无法直接给func传递参数了。可能你会说使用log(func, *args, **kw)的方式进行传递,可是这样的参数会变的非常多,而我们的原则是参数越少越好。同时,这样做的另一个缺点是,返回的函数时立即计算,而有时候,我们需要延后计算。举个例子:

f = log(foo2)  # 在这里结果时立刻进行计算的,而有时我们不希望立刻计算,而是延后计算
print(f)

2. 直接返回func不行吗?
可能,你会想到这种定义方式,直接返回原函数:

def log(func):
    print("I am log %s" % func.__name__)
    return func

那么问题又来了,func如果需要参数怎么办?此时的(*args, **kw)没法用了,否则又是立即计算。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值