装饰器相当于实现了装饰器模式。在不修改已有函数定义的情况下,增加函数的功能。一个最经典的例子:
# 定义一个输出日志的装饰器
def logging(func):
def wrapper(*args, **kw):
print("I am logging %s" % func.__name__)
return func(*args, **kw)
return wrapper
那么,一个最简单的调用例子是:
def foo(x, y):
return x + y
foo = logging(foo)
print(foo(1, 2))
上述代码中,foo
相当于被重新赋值为wrapper
函数,然后继续被调用,同时因为wrapper
内部返回原来的foo
函数,那么在这里就直接返回原来foo
的返回值了,这样就可以即满足调用原来函数的效果,又可以在不改变原来函数代码情况下,输出日志了。
上述的代码可以简化为:
@logging
def foo(x, y):
return x + y
print(foo(x, y))
带有参数的装饰器:
def log(level):
def wrapper(func):
def inner_wrapper(*args, **kwargs):
print("DEBUG LEVEL: (%s) on func: %s" % (level, func.__name__))
return func(*args, **kwargs)
return inner_wrapper
return wrapper
@log(level='level 1')
def foo(x, y):
return x + y
print(foo(1, 2))
下面解释下初学时不明白的几个地方:
1. 为什么logging内部还要定义一个wrapper,直接返回func()不行吗?
直接返回的方式是有局限性的,举个例子:
def log(func):
print("I am log %s" % func.__name__)
return func()
那么,这种方式的调用下,无法直接给func
传递参数了。可能你会说使用log(func, *args, **kw)
的方式进行传递,可是这样的参数会变的非常多,而我们的原则是参数越少越好。同时,这样做的另一个缺点是,返回的函数时立即计算,而有时候,我们需要延后计算。举个例子:
f = log(foo2) # 在这里结果时立刻进行计算的,而有时我们不希望立刻计算,而是延后计算
print(f)
2. 直接返回func不行吗?
可能,你会想到这种定义方式,直接返回原函数:
def log(func):
print("I am log %s" % func.__name__)
return func
那么问题又来了,func如果需要参数怎么办?此时的(*args, **kw)
没法用了,否则又是立即计算。。