目标:Deepseek要想发挥出最大的作用,尤其是针对一些企事业单位以及政府单位,有着“数据不出局”的要求,那么本地化部署就是必走之路,本节将详细介绍部署的过程和方法,以及在部署过程中遇到的bug,可以让大家免走很多的弯路,废话不多说,开始动手部署你的第一个本地化大模型吧!
一、下载ollama
Ollama 是一个开源的大型语言模型(LLM)服务工具,旨在简化在本地机器上运行、部署和管理大型语言模型的流程。它支持多种操作系统,包括 macOS、Windows、Linux 和 Docker,并提供了丰富的功能和接口,方便用户与模型进行交互。
-
本地运行与部署:Ollama 允许用户在本地设备上运行和管理大型语言模型,无需依赖外部服务器或云服务。
-
多模型支持:支持多种流行的预训练模型,如 LLaMA、DeepSeek、Qwen 等。
-
简单易用:提供直观的命令行工具(CLI)、WebUI 界面以及 RESTful API,方便开发者和终端用户快速上手。
-
模型自定义:用户可以通过 Modelfile 自定义模型参数和行为,满足特定的应用需求。
-
丰富的库支持