luckmia
码龄8年
关注
提问 私信
  • 博客:193,865
    193,865
    总访问量
  • 22
    原创
  • 451,593
    排名
  • 144
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:陕西省
  • 加入CSDN时间: 2016-08-29
博客简介:

luckmia的博客

博客描述:
~努力努力再努力
查看详细资料
个人成就
  • 获得146次点赞
  • 内容获得18次评论
  • 获得567次收藏
创作历程
  • 1篇
    2020年
  • 8篇
    2019年
  • 18篇
    2018年
成就勋章
TA的专栏
  • 抓包
    2篇
兴趣领域 设置
  • 编程语言
    pythonjava
  • 大数据
    redis
  • 后端
    mysql分布式
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

182人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

每日一题集合

每日一题集合二叉树中的最大路径和保证文件名唯一合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入二叉树中的最大路径和给定一个非空二叉树,返回其最大路径和。(6.21)本题中,路径被定义为一条从树中任意节点出发,达到任意节点的序列。该路径至
原创
发布博客 2020.07.12 ·
653 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

keras入门系列(2)

Keras之函数式(Functional)模型我们起初将Functional一词译作泛型,想要表达该类模型能够表达任意张量映射的含义,但表达的不是很精确,在Keras2里我们将这个词改移为“函数式”,函数式模型称作Functional,但它的类名是Model,因此有时候也用Model来代表函数式模型。Keras函数式模型接口是用户定义多输出模型、非循环有向模型或具有共享层的模型等复杂模型的途径...
原创
发布博客 2019.07.22 ·
334 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

keras学习文档入门

Keras 的核心数据结构是 model,一种组织网络层的方式。最简单的模型是 Sequential 顺序模型,它由多个网络层线性堆叠。顺序模型是多个网络层的线性堆叠。对于更复杂的结构,你应该使用 Keras 函数式 API,它允许构建任意的神经网络图。from keras.models import Sequentialmodel = Sequential()可以简单地使用 .add()...
原创
发布博客 2019.07.22 ·
434 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

sklearn :Pipeline 与 FeatureUnion入门指南

Pipeline的作用  Pipeline可以将许多算法模型串联起来,可以用于把多个estamitors级联成一个estamitor,比如将特征提取、归一化、分类组织在一起形成一个典型的机器学习问题工作流。Pipleline中最后一个之外的所有estimators都必须是变换器(transformers),最后一个estimator可以是任意类型(transformer,classifier,r...
原创
发布博客 2019.05.07 ·
3762 阅读 ·
6 点赞 ·
1 评论 ·
23 收藏

算法归一化总结

数据标准化分为三种:标准化、线性归一化、非线性归一化。归一化的作用有两个:第一,加快运算速度。第二,提高计算精度。一般来说,概率树结构的算法不需要进行数据归一化处理。寻找最优化问题的算法需要进行数据归一化处理。下面总结一下常见的算法哪些需要进行数据归一化,哪些不需要。需要不需要LR(线性回归、逻辑回归)决策树SVM(支持向量机)随机森林...
转载
发布博客 2019.04.15 ·
2581 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

2019华为软件精英挑战赛总结

2019华为软件精英挑战赛总结一点点感想华为软挑切切实实的做了两周,说实话这也是第一次打这种代码比赛,最终的成绩略显遗憾,西北赛区的58名,因为今年没有64强这一说法,所以没有任何奖励,希望明年有再来一次的决心勇气,毕竟竹篮打水一场空太让人不爽了。成绩附图如下,第58名:我是起名废团队赛题简介今年的赛题首先让人窒息的就是长达29页的题目,光是读题我就读了一下午加一晚上。总结一下就是有几...
原创
发布博客 2019.04.04 ·
2320 阅读 ·
3 点赞 ·
1 评论 ·
2 收藏

Skip-Gram模型理解

Skip-Gram模型理解什么是Word2Vec和Embeddings?  Word2Vec是从大量文本语料中以无监督的方式学习语义知识的一种模型,它被大量地用在自然语言处理(NLP)中。那么它是如何帮助我们做自然语言处理呢?Word2Vec其实就是通过学习文本来用词向量的方式表征词的语义信息,即通过一个嵌入空间使得语义上相似的单词在该空间内距离很近。Embedding其实就...
转载
发布博客 2019.03.05 ·
715 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

TensorFlow基础入门整理

1、 计算图概念1.1 Tensor Tensor就是张量, 可以简单理解为多维数组,表明了数据结构1.2 FlowFlow 表达了张量之间通过计算相互转化的过程,体现了数据模型1.3 数据流图基础数据流图是每个 TensorFlow 程序的核心,用于定义计算结构每一个节点都是一个运算,每一条边代表了计算之间的依赖关系上图展示了可完成基本加法运算的数据流图。在该图中,...
转载
发布博客 2019.03.03 ·
583 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

关于卷积神经网络(CNN)与递归/循环神经网络(RNN)的入门学习

最近科研看了两篇论文,上面分别用了两种方法,一种是卷积神经网络,另一种则是递归神经网络,因为之前没有接触过神经网络这一块知识,故特地整理一下,方便自己了解。卷积神经网络(CNN)卷积神经网络(Convolutional Neural Network)简称CNN,CNN是所有深度学习课程、书籍必教的模型,CNN在影像识别方面的为例特别强大,许多影像识别的模型也都是以CNN的架构为基础去做延伸。另...
原创
发布博客 2019.03.02 ·
15530 阅读 ·
9 点赞 ·
4 评论 ·
55 收藏

使用sklearn进行集成学习——实践

系列《使用sklearn进行集成学习——理论》《使用sklearn进行集成学习——实践》目录1 Random Forest和Gradient Tree Boosting参数详解2 如何调参?  2.1 调参的目标:偏差和方差的协调  2.2 参数对整体模型性能的影响  2.3 一个朴实的方案:贪心的坐标下降法    2.3.1 Random Forest调参案例:Digit Recog...
原创
发布博客 2018.10.24 ·
323 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

集成学习理论知识

集成学习理论知识《使用sklearn进行集成学习——理论》《使用sklearn进行集成学习——实践》目录1 前言2 集成学习是什么?3 偏差和方差   3.1 模型的偏差和方差是什么?   3.2 bagging的偏差和方差   3.3 boosting的偏差和方差   3.4 模型的独立性   3.5 小结4 Gradient Boosting  ...
原创
发布博客 2018.10.24 ·
930 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

python--scapy学习

Python的Scapy模块能够让用户发送,嗅探,解析并伪造网络数据包。这些能力能用来构建探测,扫描或者攻击网络的工具。换句话说,Scapy是一个强大的交互式数据包处理程序。它能够伪造或者解码大量的数据包协议,发送,捕获数据包并匹配请求和回复。Scapy能轻松的处理像扫描,追踪,探测,单元测试,攻击或者网络发现能大多数常见的任务。它能够替代像hping, arpspoof, arp-sk, a...
原创
发布博客 2018.09.04 ·
854 阅读 ·
0 点赞 ·
1 评论 ·
4 收藏

tshark基本使用用法

1、目的  写这篇博客的目的主要是为了方便查阅,使用wireshark可以分析数据包,可以通过编辑过滤表达式来达到对数据的分析;但我的需求是,怎么样把Data部分导出来,因为后续的工作主要针对数据包的Data部分,主要是对本地存储的.pcap文件进行解析。这时候就会使用到tshark命令行工具,可...
转载
发布博客 2018.07.26 ·
5344 阅读 ·
0 点赞 ·
4 评论 ·
3 收藏

排序--python实现

一、冒泡排序、选择排序、插入排序之所以要把他们列在一起是因为这三个排序的时间复杂度均为O(n2)O(n2)O(n_2)。 下面简单介绍这三个排序的基本原理。注:画图更便于理解冒泡排序:简单来讲就是每次将最大的数字排在后面,假设有下列列表: [6,3,5,7,0,4,1,2]—->[3,6,5,7,0,4,1,2]—->[3,5,6,7,0,4,1,2]—>[3...
原创
发布博客 2018.07.23 ·
206 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

二叉树序列化、反序列化、层次遍历python

一、二叉树的分层遍历给定一棵二叉树,要求进行分层遍历,每层的节点值单独打印一行,下图给出事例结构:思路:增加两个TreeNode:last和nlast last:表示当前遍历层最右结点 nlast:表示下一层最右结点从根结点开始,将根结点放入队列①,之后弹出根结点①,每弹出一个结点就先后将其左右结点②③放入队列中,由于队列先进先出,因此先取出的是②,然后将④⑤放入到队列中,...
原创
发布博客 2018.07.22 ·
1978 阅读 ·
0 点赞 ·
2 评论 ·
4 收藏

剑指offer习题集

一、二维数组的查找 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。思路:从左下角元素往上查找,右边元素是比这个元素大,上边是的元素比这个元素小。于是,target比这个元素小就往上找,比这个元素大就往右找。如果出了边界,则说明二维数组中不存在tar...
原创
发布博客 2018.07.21 ·
764 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习--概率图模型

一、隐马尔可夫模型隐马尔可夫模型是结构最简单的动态贝叶斯网,这是一种著名的有向图模型,主要用于时序数据建模,在语音识别、自然语言处理等领域有广泛应用。   首先我们来看看什么样的问题解决可以用HMM模型。使用HMM模型时我们的问题一般有这两个特征:1)我们的问题是基于序列的,比如时间序列,或者状态序列。2)我们的问题中有两类数据,一类序列数据是可以观测到的,即观测序列;而另一类数据是...
原创
发布博客 2018.07.18 ·
913 阅读 ·
1 点赞 ·
1 评论 ·
3 收藏

特征选择与稀疏学习

一、子集搜索与评价一般地,我们可以用很多属性/特征来描述一个示例,例如对于一个人可以用性别、身高、体重、年龄、学历、专业、是否吃货等属性来描述,那现在想要训练出一个学习器来预测人的收入。根据生活经验易知:并不是所有的特征都与学习任务相关,例如年龄/学历/专业可能很大程度上影响了收入,身高/体重这些外貌属性也有较小的可能性影响收入,但像是否是一个地地道道的吃货这种属性就八杆子打不着了。因此我们只...
原创
发布博客 2018.07.17 ·
10663 阅读 ·
3 点赞 ·
0 评论 ·
28 收藏

降维与度量学习

一、降维与度量学习样本的特征数称为维数(dimensionality),当维数非常大时,也就是现在所说的“维数灾难”,具体表现在:在高维情形下,数据样本将变得十分稀疏,因为此时要满足训练样本为“密采样”的总体样本数目是一个触不可及的天文数字,谓可远观而不可亵玩焉…训练样本的稀疏使得其代表总体分布的能力大大减弱,从而消减了学习器的泛化能力;同时当维数很高时,计算距离也变得十分复杂,甚至连计算内积...
原创
发布博客 2018.07.16 ·
810 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

Tensorflow入门与实例

本文主要通过一个简单的 Demo 介绍 TensorFlow 初级 API 的使用方法,因为自己也是初学者,因此本文的目的主要是引导刚接触 TensorFlow 或者 机器学习的同学,能够从第一步开始学习 TensorFlow。阅读本文先确认具备以下基础技能:会使用 Python 编程(初级就OK,其实 Tens...
转载
发布博客 2018.07.12 ·
321 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏
加载更多