什么是倍频程?

文章介绍了倍频程和1/3倍频程的概念在声学领域的应用,特别是如何用于声音频谱分析。通常使用1/3倍频程来研究声能分布,因为它提供了更细致的频率段划分。通过倍频程分析确定需要降噪的频段,随后使用线性谱分析来识别主要声源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

倍频程(Octave)

之前看这个概念总是似懂非懂就过去了,今天认真学习一下。

首先看看百度百科的解释。

什么是倍频程?

倍频程,又称倍波程,指在滤波特性曲线上,频率或波长之比为2或1/2的两个频率或波长之间的间隔。

对于长波通滤波器,二分之一波长的截波点称倍波程;对于短波通滤波器,二倍波长的截波点称倍波程。倍波所对应的强度的对数与截波所对应的强度的对数之差的称滤波器陡度。对带通滤波器的波长特性曲线,两截波间的波长范围称波带。截波、陡度和波带是描述滤波器件性能常用的三个参数。

在这里插入图片描述
看来很多领域学科都用到这个专业名词。上面说的是物理电磁波领域用到的。

那我们主要关心声学领域的意义。

声学领域:倍频程

将频谱分为若干个连续的频段(每个频段的上限频率等于下一个频段的下限频率),每个频段为一个频带,以直方图表示。

在这里插入图片描述

  • N=1 :一倍频程,简称倍频程;
  • N=1/3 :三分之一倍频程;
  • N=1/12 :十二分之一倍频程

在这里插入图片描述
中心频率和带宽:

在这里插入图片描述
常见的有1/1、1/2、1/3、1/12、1/24倍频程分析,其中1/3倍频程分析最常用。1/3倍频程可由FFT线状谱通过一定综合运算得出。

声谱

频率为横坐标,声音的强弱(声压级、声强级或声功率级)为纵坐标,绘制出声音强弱随频率分布的线图称为声音的频谱,简称声谱。

由FFT分析得到的频谱,具有等带宽性质,其频率分辨率等于谱线间隔Δf,这种方法谱线较多,Δf 较小,可称为窄带谱。

某声波的频谱图:
在这里插入图片描述

由于:
1.可听声的频率范围20~20kHz,宽达10个倍频程,其频率分布范围非常广。
2.另一方面从上图可看到,分析的频带才到4000Hz,其谱线就已经过密,同时其该频段大部分也不需要展现也无法展现细节。

所以:
通常为方便起见,常在连续频率范围内把它划分为若干个相连的小段,每一小段叫做频带或频程,每个小频带内的声能量被认为是均匀的,然后研究不同频带上的分布情况。

具体怎么做?
根据不同的要求,声学量的分析频率带宽的选择也不一样。大致而言,当分析精度要求高时,分析频带应选用窄频带宽,如果是简单测量,则频率分析带宽可以放宽。实际测量中最为常用的频率分析带宽为窄频带宽、倍频程和1/3倍频程带宽。
声音的频率范围很宽,一般不可能,也没有必要对每个频率逐一测量,一般都用1/1倍频程或1/3倍频程进行分析。

可听声范围内:
在可听声范围内,倍频程是以n=12~ 43的数值给出,且为3的整数倍;1/3倍频程以n=12~ 43的数值给出。表1和表2分别是倍频程和1/3倍频程带宽中各中心频率值与其上、下限截止频率值的对应关系。图3和图4则是某噪声的倍频程和1/3倍频程特性。需要特别注意的是倍频程或1/3倍频程均是指该频段范围内的声音的总体特性,例如1000Hz的倍频程包含了710Hz~ 1420Hz频段内的信息,而1000Hz的1/3倍频程仅包含了891Hz~ 1122Hz频段内的信息。因此如果是1000Hz的1/3倍频程声压级为891Hz~ 1122Hz频段内声压级总和;而1000Hz的倍频程声压,它等于710Hz~1420Hz频段内声压级总和;也即是等于800Hz、1000Hz和1250Hz三个1/3倍频程内声压级总和。

表1 倍频程频程带宽中各中心频率值与其上、下限截止频率和频率数
在这里插入图片描述

图3 某噪声倍频程
在这里插入图片描述

表2 1/3倍频程频程带宽中各中心频率值与其上、下限截止频率和频率数
在这里插入图片描述
图4 某噪声1/3倍频程
在这里插入图片描述
综合以上分析可以发现,倍频程或1/3倍频程可以看到噪声在各个频段的分布,但无法精确的得到噪声的峰值特性,从而不能精确的判断出声源;而线性频谱虽然可以较为精确的获得噪声的峰值特性,从而得到主要声源的影响,但其谱线数过于密集,较难得到整个频谱的噪声特性。因此在实际降噪项目中,应该是首先将采集到的声信号进行倍频程分析,得到需要降噪的频段,而后将所需的降噪频段进行线性谱分析,得到该频段内的主要声源贡献。

<think>好的,用户想了解什么是倍频程,特别是在音频术语中的解释。首先需要明确倍频程的定义,可能涉及频率范围、音乐和声学中的应用。 要开始搜索,查找倍频程的准确定义。根据搜索结果,倍频程是两个频率之间的间隔,其中一个频率是另一个的两倍。例如,从100Hz到200Hz就是一个倍频程。这一点需要明确解释,可能涉及数学公式,如频率比的计算。 接下来,考虑倍频程在音乐中的具体应用。音乐中的八度音阶对应倍频程,比如A4是440Hz,A5就是880Hz。这里需要举例说明,让用户更容易理解。 然后,在声学工程中的应用也很重要。倍频程分析用于噪声测量和频率响应评估,帮助工程师分析声音分布。这部分需要说明实际应用场景,比如使用1/3倍频程滤波器进行更细致的分析。 还需要解释相关参数,如中心频率和带宽。中心频率是两个截止频率的几何平均数,带宽则随中心频率变化。这些参数的计算公式可能需要用数学表达式呈现,例如$f_c = \sqrt{f_1 \cdot f_2}$。 最后,要确保回答结构清晰,分点说明,符合用户的要求。避免使用步骤词汇,而是用不同的方法或方面来组织内容。同时,检查是否遗漏了重要信息,比如倍频程与心理声学的关系,人耳对频率的感知特性。 生成相关问题时要基于用户的原问题,可能涉及应用领域、与其他音程的关系,以及数学计算等。确保问题相关且有逻辑延伸,帮助用户深入理解。</think>倍频程(Octave)是声学和音乐领域衡量频率间隔的核心概念,指两个频率比为2:1的区间。以下从技术参数和应用场景两方面解释: **1. 数学定义与频率关系** 两个频率$f_2$和$f_1$构成倍频程的条件是: $$f_2 = 2^n \cdot f_1$$ 当$n=1$时为完整倍频程,如440Hz(A4)与880Hz(A5)。频率比计算公式为: $$\text{频率比} = \log_2\left(\frac{f_2}{f_1}\right)$$ **2. 声学工程应用** 在噪声测量中采用1/N倍频程滤波器组(常用1/1、1/3、1/12),中心频率按ISO标准定义: $$f_c = 1000 \cdot 10^{0.1k}$$ 其中k为频带序号。典型1/3倍频程中心频率包含160Hz、200Hz、250Hz等序列。 **3. 音乐理论表现** 平均律体系将八度分为12个半音,每个半音频率比为$2^{1/12}$。钢琴中央C(261.63Hz)与高音C(523.25Hz)构成纯八度关系,符合: $$f_{high} = 2 \cdot f_{low}$$ **4. 心理声学特性** 人耳对倍频程的感知呈非线性,巴克尺度将20Hz-16kHz划分为24临界频带,每个频带约覆盖1/3倍频程,解释为何均衡器采用倍频程划分进行声音调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值