一、分类
1.内部排序和外部排序
- 内部排序:待排序记录存放在计算机随机存储器中(说简单点,就是内存)进行的排序过程。
- 外部排序:待排序记录的数量很大,以致于内存不能一次容纳全部记录,所以在排序过程中需要对外存进行访问的排序
2.比较类排序和非比较排序
- 比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序。
- 非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序。 二、复杂度分析,算法稳定性和适用场景
- 稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面。
- 不稳定:如果a原本在b的前面,而a=b,排序之后 a 可能会出现在 b 的后面。
- 时间复杂度:对排序数据的总的操作次数。反映当n变化时,操作次数呈现什么规律。
- 空间复杂度:是指算法在计算机内执行时所需存储空间的度量,它也是数据规模n的函数。
三、八大排序算法详解
名称 | 内容(由易到难) |
冒泡 | 一趟得出一个最大值放最后 |
插入 | 第2个值开始即前2个值比较(区域内比较)得出最小值放前面,下次是前3个值比较。 |
选择 | 第一个值和所有值比较得出最小值放前面 |
快速 | 填空(找基准),从第一个值开始 |
1. 冒泡排序(两两比较)
1.1 例:2 4 3 1 6 5(两两交换,从前往后,一趟之后最大值移动到最后)
第一趟:2<4 不变 2 4 3 1 6 5
4<3 交换 2 3 4 1 6 5
4<1 交换 2 3 1 4 6 5
6<5交换 2 3 1 4 5 6
第二趟:2 1 3 4 5 6
第三趟:1 2 3 4 5 6
第四趟:1 2 3 4 5 6
第五趟:1 2 3 4 5 6
最多需要n-1趟。
2. 直接插入排序
2.1 例: 2 4 3 1 6 5(从第二个开始往前比较,和冒泡相反,每趟排完序区域内最小值移动到最前面)
第一趟:2 4 3 1 6 5
第二趟:2 3 4 1 6 5
第三趟:1 2 3 4 6 5
第四趟:1 2 3 4 6 5
第五趟:1 2 3 4 5 6
3.选择排序(直接选择排序又称简单选择排序--从第一个值开始往后找最小值)
----快速排序和插入排序的结果一样,一趟得出一个最小值。
3.1 演示(和冒泡算法相反,一趟得出一个最小值)
例:
6 3 5 7 0 (从第二个数开始和所有数比较,一趟比较完下一轮从第三个数开始依次遍历所有)
第一趟:0 6 5 7 3 (3 6 5 7 0->0 6 5 7 3)
第二趟:0 3 6 7 5 (0 5 6 7 3->0 3 6 7 5)
第三趟: 0 3 5 7 6 (67不变,65交换)
第四趟:0 3 5 6 7 (67交换)
4. 快速排序
4.1 例: 2 4 3 1 6 5(选基准(填空),一般选第一个,跟最后边的比较,交换就再跟前边的比,不交换就还跟后边的比较)
第一趟:以2为基准.
1 2 3 4 6 5
第二趟:把1 2 3 4 6 5分成2部分,都进行同样的方法排序,也就是说1 2 3以1为基准排序,6 5以6为基准排序。
1 2 3 4 5 6
5. 归并排序
5.1 例:
6. 基数排序
6.1
7. 希尔(shell)排序
7.1
8. 堆排序
8.1
9. 折半查找
**重点:**要使用折半查找,首先数组必须是要已经排好序的。
步骤:
1.取数组中间值,比较中间值与要查找的数的大小
2.若中间值大于查找值,high-1;若中间值小于查找值,low+1
3.重复1,2步,直至中间值小于或等于查找值
ps:总个数 偶VS奇
奇:除于2可以得到一个整数
偶:除于2可以得到一个小数,然而数组的下标里没有小数,很多人就很难受,但其实他们忘了int类型是如何取值的了,虽然除出来是小数,但因为int的强制取整,会丢弃掉小数部分,注意不是四舍五入,所以中间值依然为整数。
一、顺序查找
条件:无序或有序队列。
原理:按顺序比较每个元素,直到找到关键字为止。
时间复杂度:O(n)
二、二分查找(折半查找)
条件:有序数组
原理:查找过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;
如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。
如果在某一步骤数组为空,则代表找不到。
这种搜索算法每一次比较都使搜索范围缩小一半。
时间复杂度:O(logn)
三、二叉排序树查找
条件:先创建二叉排序树:
1. 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
2. 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
3. 它的左、右子树也分别为二叉排序树。
原理:
在二叉查找树b中查找x的过程为:
1. 若b是空树,则搜索失败,否则:
2. 若x等于b的根节点的数据域之值,则查找成功;否则:
3. 若x小于b的根节点的数据域之值,则搜索左子树;否则:
4. 查找右子树。
时间复杂度:
四、哈希表法(散列表)
条件:先创建哈希表(散列表)
原理:根据键值方式(Key value)进行查找,通过散列函数,定位数据元素。
时间复杂度:几乎是O(1),取决于产生冲突的多少。
五、分块查找
原理:将n个数据元素"按块有序"划分为m块(m ≤ n)。
每一块中的结点不必有序,但块与块之间必须"按块有序";即第1块中任一元素的关键字都必须小于第2块中任一元素的关键字;
而第2块中任一元素又都必须小于第3块中的任一元素,……。
然后使用二分查找及顺序查找。
二叉树的遍历主要有三种:
(1)先(根)序遍历(根左右)
(2)中(根)序遍历(左根右)
(3)后(根)序遍历(左右根)
举个例子:
先(根)序遍历(根左右):A B D H E I C F J K G
中(根)序遍历(左根右) : D H B E I A J F K C G
后(根)序遍历(左右根) : H D I E B J K F G C A
以后(根)序遍历为例,每次都是先遍历树的左子树,然后再遍历树的右子树,最后再遍历根节点,以此类推,直至遍历完整个树。
此外,还有一个命题:给定了二叉树的任何一种遍历序列,都无法唯一确定相应的二叉树。但是如果知道了二叉树的中序遍历序列和任意的另一种遍历序列,就可以唯一地确定二叉树。