P2184 贪婪大陆(线段树)

本文介绍了一种使用两个树状数组来高效解决区间查询问题的方法。通过维护特定区间的前缀和,可以快速计算出给定区间内不同子区间的数量。文章提供了完整的代码实现,并解释了如何更新和查询这些树状数组。

在这里插入图片描述
不要读歪题了,每个地雷都是不同的,一开始思考的是地雷可能重复,那么这题难度就骤然下降.实际上是在查询区间[L,R][L,R][L,R]包含多少种不同的区间。
考虑查询的区间为:[L,R][L,R][L,R]
考虑区间[l,r][l,r][l,r],如果l<=Rl<=Rl<=R,那么该区间可能与[L,R][L,R][L,R]相交.那么不能相交的情况就是那些r<Lr<Lr<L的情况,需要扣掉这部分的区间
考虑用两个树状数组维护以上信息,第一个维护lll的前缀和,第二个维护rrr的前缀和.
对于每次查询,输出tree1[R]−tree2[L−1]tree1[R]-tree2[L-1]tree1[R]tree2[L1]

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e6+5;
const int INF = 1e9+7;
typedef long long ll;
typedef pair<int,int> pii;
#define all(a) (a).begin(), (a).end()
#define pb(a) push_back(a)
vector<int> G[maxn];
int tr1[maxn],tr2[maxn];
int n,m;
void update(int *tr,int x){
	for(int i=x;i<=n;i+=(i&(-i))){
		tr[i]++;
	}
}
int query(int *tr,int x){
	int ans = 0;
	for(int i=x;i>0;i-=(i&(-i))){
		ans+=tr[i];
	}
	return ans;
}
int main(){
    ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
	cin>>n>>m;
	while(m--){
		int op;cin>>op;
		if(op==1){
			int l,r;cin>>l>>r;
			update(tr1,l);
			update(tr2,r);
		}
		else{
			int l,r;cin>>l>>r;
			cout<<query(tr1,r) - query(tr2,l-1)<<"\n";
		}
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

minato_yukina

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值