题目
给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
插入一个字符
删除一个字符
替换一个字符
示例 1:
输入: word1 = "horse", word2 = "ros"
输出: 3
解释:
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')
示例 2:
输入: word1 = "intention", word2 = "execution"
输出: 5
解释:
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')
思路
一般思路无从下手。采用动态规划。初始化矩阵 int[word1.length()+1][word2.length()+1]。int[i][j]代表word1的i-1之前的字符串变为word2的j-1之前的字符串所使用的最小操作数。int[word1.length()][word2.length()]即为所求。
1. 初始化m[0][0]=0
2. 初始化m[0][j]、m[i][0]
3. 之后按行初始化m[i][j]
m[i][j] = min( 左+1,上+1, 左上+0 or 左上+1(根据是否相等) )。
代码
class Solution {
public int minDistance(String word1, String word2) {
int[][] m=new int[word1.length()+1][word2.length()+1];
m[0][0]=0;
for(int i=1;i<word1.length()+1;i++){
m[i][0]=i;
}
for(int i=1;i<word2.length()+1;i++){
m[0][i]=i;
}
for(int i=1;i<word1.length()+1;i++){
for(int j=1;j<word2.length()+1;j++){
int min=m[i-1][j-1];
if(word1.charAt(i-1)==word2.charAt(j-1)){
}else{
min++;
}
min=Math.min(min,Math.min(m[i-1][j]+1,m[i][j-1]+1));
m[i][j]=min;
}
}
return m[word1.length()][word2.length()];
}
}
关键
动态规划