【icyle】Leetcode-cn:4. 寻找两个正序数组的中位数

注:此题为Hard,难度较高,目前参考Leetcode官方解答思路,地址:官方解答

题目

给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的中位数。
进阶:你能设计一个时间复杂度为 O(log (m+n)) 的算法解决此问题吗?

示例 1:

输入:nums1 = [1,3], nums2 = [2]
输出:2.00000
解释:合并数组 = [1,2,3] ,中位数 2

示例 2:

输入:nums1 = [1,2], nums2 = [3,4]
输出:2.50000
解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5

示例 3:

输入:nums1 = [0,0], nums2 = [0,0]
输出:0.00000

示例 4:

输入:nums1 = [], nums2 = [1]
输出:1.00000

示例 5:

输入:nums1 = [2], nums2 = []
输出:2.00000

解答1(更为通用,可寻找第k大的数)

思路

二分法。代码中有详细的解释说明,具体思路参考官方解答,在页面顶部已设置好链接。

需要的头文件

vector

代码
/*
 * @lc app=leetcode.cn id=4 lang=cpp
 *
 * [4] 寻找两个正序数组的中位数
 */

// @lc code=start

#include <vector>
using namespace std;
class Solution
{
public:
    int getKthElement(const vector<int> &nums1, const vector<int> &nums2, int k)
    {
        /* 主要思路:要找到第 k (k>1) 小的元素,那么就取 pivot1 = nums1[k/2-1] 和 pivot2 = nums2[k/2-1] 进行比较
         * 这里的 "/" 表示整除
         * nums1 中小于等于 pivot1 的元素有 nums1[0 .. k/2-2] 共计 k/2-1 个
         * nums2 中小于等于 pivot2 的元素有 nums2[0 .. k/2-2] 共计 k/2-1 个
         * 取 pivot = min(pivot1, pivot2),两个数组中小于等于 pivot 的元素共计不会超过 (k/2-1) + (k/2-1) <= k-2 个
         * 这样 pivot 本身最大也只能是第 k-1 小的元素
         * 如果 pivot = pivot1,那么 nums1[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums1 数组
         * 如果 pivot = pivot2,那么 nums2[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums2 数组
         * 由于我们 "删除" 了一些元素(这些元素都比第 k 小的元素要小),因此需要修改 k 的值,减去删除的数的个数
         */

        // 定义两个数组的长度
        int m = nums1.size();
        int n = nums2.size();

        //定义两个数组的左指针,均放在[0]的位置
        int index1 = 0, index2 = 0;

        while (true)
        {
            // 边界情况
            // index不可能超过m或n(因为newIndex检测到越界时,只会返回数组最后一个元素)
            // 如果index恰好为数组长度,证明这个数组已经被“删完了”,那么我们可以立刻返回另一个数组中第k大的元素,这个元素就是中位数
            // 如果不明白,用极端例子解释,nums1=[],nums2=[1,2,3],此时k= (nums1.size() + nums2.size() + 1)/2
            // 即用这个式子算出来的k就是我们数学上这个中位数的位置,此处k=2
            // 而c++下标从0开始,所以应该减去1,得到了以下的操作
            if (index1 == m)
            {
                return nums2[index2 + k - 1];
            }
            if (index2 == n)
            {
                return nums1[index1 + k - 1];
            }

            //如果算到k=1时没有一个数组被删除完,意味着当前指针指向的这两个数最小的那个就是中位数(数学知识)
            if (k == 1)
            {
                return min(nums1[index1], nums2[index2]);
            }

            // 正常情况
            /* 
            如果index+k/2-1没有越界(数组长度分别为m-1和n-1),就返回index+k/2-1下标
            如果越界,就返回最后一个元素下标
            */
            int newIndex1 = min(index1 + k / 2 - 1, m - 1);
            int newIndex2 = min(index2 + k / 2 - 1, n - 1);

            // 取出这两个位置的元素
            int pivot1 = nums1[newIndex1];
            int pivot2 = nums2[newIndex2];

            /*
            A[k/2−1]<B[k/2−1]:证明A[0]到A[k/2−1]必然小于中位数,全部排除
            A[k/2−1]>B[k/2−1]:证明B[0]到B[k/2−1]必然小于中位数,全部排除
            A[k/2−1]=B[k/2−1]:可以排除A[0]到A[k/2−1],也可以排除B[0]到B[k/2−1](2选1)
            */
            if (pivot1 <= pivot2)
            {
                //“删除”index到newIndex之间的元素,让新的index指向newIndex的下一个位置
                //实际上就是移动指针操作,逻辑上忽略前面的元素
                //下面同理
                k -= newIndex1 - index1 + 1;
                index1 = newIndex1 + 1;
            }
            else
            {
                k -= newIndex2 - index2 + 1;
                index2 = newIndex2 + 1;
            }
        }
    }

    double findMedianSortedArrays(vector<int> &nums1, vector<int> &nums2)
    {
        // 定义总长度
        int totalLength = nums1.size() + nums2.size();

        // 奇数个元素(totalLength为什么要加1,上面已经说明,这里是数学上的中位数位置,而不是下标的位置)
        if (totalLength % 2 == 1)
        {
            return getKthElement(nums1, nums2, (totalLength + 1) / 2);
        }

        // 偶数个元素
        else
        {
            return (getKthElement(nums1, nums2, totalLength / 2) + getKthElement(nums1, nums2, totalLength / 2 + 1)) / 2.0;
        }
    }
};
// @lc code=end

时间复杂度和空间复杂度
  • 时间复杂度:初始的k为(m+n)/2或者多加一个常数1,这里m和n分别是数组 nums1 和 nums2 的长度。同时,二分法每一轮循环可以将查找范围减少一半,所以为 O(log(m,n))
  • 空间复杂度:没有申请与长度有关的数组。所以为 O(1)

解答2(理解中位数性质)(待更新)

思路

参考官方解答。

需要的头文件

vector

代码

反思与总结

  1. 遇到时间复杂度为log的查找算法,应该要想起二分查找法。
  2. 二分法实际上是一个分治算法,更深一层属于减治法(但是并没有明确的定义,国内很少提及减治法)。在学习的时候,应该将二分法、快排、分治、TopK联系起来系统理解。
  3. 注意整数除法(/2)和浮点数除法(/2.0)在计算机中的区别。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值