【Python笔记】spark.read.csv

本文探讨了Spark读取csv、json、MySQL和Hive数据的多种方式,以及`spark.read.csv`与`spark.read.format`性能对比,重点讲解了数据加载的最佳实践和常见技术路径。
摘要由CSDN通过智能技术生成

1 问题发现

from pyspark.sql.types import StructField, StructType, StringType

# 定义 spark df 的表结构
schema = StructType(
    [
        StructField('ip', StringType(), True),
        StructField('city', StringType(), True)
    ]
)
ip_city_path = job+'/abcdefg'
ip_city_df = spark.read.csv(ip_city_path, header=True, schema=schema, encoding='utf-8', sep=',')

or

spark.read
     .option("charset", "utf-8")
     .option("header", "true")
     .option("quote", "\"")
     .option("delimiter", ",")
     .csv(...)

2 Spark读取外部数据的几种方式

Spark读取外部数据的几种方式

2.1 读取csv文件(四种方式)

//方式一:直接使用csv方法
  val sales4: DataFrame = spark.read.option("header", "true").option("header", false).csv("file:///D:\\Software\\idea_space\\spark_streaming\\src\\data\\exam\\sales.csv")
    .withColumnRenamed("_c0", "time")
    .withColumnRenamed("_c1", "id")
    .withColumnRenamed("_c2", "salary")
    .withColumn("salary", $"salary".cast("Double"))

//方式二:使用format
  val salesDF3 = spark.read.format("com.databricks.spark.csv")
  //header默认false头不设置成字段名,true是第一行作为数据表的字段名
    // .option("header", "true")
    //自动类型推断
	// .option("inferSchema", true)
    .load("D:\\Software\\idea_space\\spark_streaming\\src\\data\\exam\\sales.csv")
    //字段重命名
    .withColumnRenamed("_c0", "time")
    .withColumnRenamed("_c1", "id")
    .withColumnRenamed("_c2", "salary")
    //字段重命名后修改类型
    .withColumn("salary", $"salary".cast("Double"))
    
 //方式三:通过算子将数组转换成样例类对象
private val salesDF: DataFrame = sc.textFile("file:///D:\\Software\\idea_space\\spark_streaming\\src\\data\\exam\\sales.csv")
    .map(_.split(",")).map(x => Sales(x(0), x(1), x(2).toDouble)).toDF()
case class Sales(time:String,id:String,salary:Double)    

 //方式四:通过schema创建 
 val userRDD:RDD[Row] = sc.textFile("file:///D:\\Software\\idea_space\\spark_streaming\\src\\data\\exam\\demo02.txt").map(_.split(","))
      .map(x => Row(x(0), x(1), x(2).toInt))
 
 val schema = StructType(Array(
  StructField("username", StringType, true),
  StructField("month", StringType, true),
  StructField("visitNum", IntegerType, true)
 ))
 
 val userDF: DataFrame = spark.createDataFrame(userRDD,schema)

spark.read.format(“csv”)与spark.read.csv的性能差异

DF1花了42秒,而DF2只花了10秒. csv文件的大小为60+ GB.

DF1 = spark.read.format("csv").option("header", "true").option("inferSchema", "true").load("hdfs://bda-ns/user/project/xxx.csv")

DF2 = spark.read.option("header", "true").csv("hdfs://bda-ns/user/project/xxx.csv")

https://www.it1352.com/1847378.html

2.2 读取json文件

//方式一:
private val userJsonDF: DataFrame = spark.read.json("file:///D:\\Software\\idea_space\\spark_streaming\\src\\data\\exam\\users.json")
//方式二:
private val userJsonDF: DataFrame = spark.read.format("json").load("D:\\Software\\idea_space\\spark_streaming\\src\\data\\exam\\users.json")

2.3 读取及写入mysql

读取

val url = "jdbc:mysql://hadoop1:3306/test"
  val tableName = "sales"
  private val prop = new Properties()
  prop.setProperty("user","root")
  prop.setProperty("password","ok")
  prop.setProperty("driver","com.mysql.jdbc.Driver")
  
private val salesDF2: DataFrame = spark.read.jdbc(url,tableName,prop)

写入

val url = "jdbc:mysql://hadoop1:3306/test"
  val tableName = "sales"
  private val prop = new Properties()
  prop.setProperty("user","root")
  prop.setProperty("password","ok")
  prop.setProperty("driver","com.mysql.jdbc.Driver")
  //mode的几种方式:overwrite覆盖,append追加
salesDF.write.mode("overwrite").jdbc(url,tableName,prop)

2.4 操作hive中的数据表

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值