题目链接
https://www.luogu.org/problemnew/show/P1251
餐巾计划问题
我们把每一天拆成早上和晚上,早上的流表示这天有多少干净的毛巾,晚上的流表示这天有多少脏的毛巾
建边分成6类,用A表示早上,B表示晚上
1.从i.A到T连流量为这一天的需求,费用为0的边,表示我这天需要这么多毛巾
2.从S到i.B连流量为这一天的需求,费用为0的边,表示我这天留下来这么多脏毛巾,注意不能从A连过来,不然把1中的流量分出来就挂了,就不能保证最大流每天都能满足需求
3.从i.b到i+1.b连流量为INF,费用为0的边,表示我把前一天的脏毛巾留下来,注意贪心的把毛巾早点拿去洗是不对的,因为有可能这个毛巾根本不需要洗,一直留着就行了,所以这条边一定要建
4.从i.b到i+t1.a连流量为INF,费用为f1的边,表示送去快洗。
5.从i.b到i+t2.a连流量为INF,费用为f2的边,表示送去慢洗。
6.从S到i.a连流量为INF,费用为f3的边,表示直接购买。
图建完之后跑一边最小费用最大流就行了.
#include<cstdio>
#include<algorithm>
#include<cctype>
#include<cstring>
#include<iostream>
#define LL long long
#define INF (21390621)
#define int long long
#define N (4010)
using namespace std;
int n,f1,t1,t2,f2,f3,S,T,x,tot,h,t,ans,fll;
int a[N<<3],nxt[N<<3],f[N<<3],fare[N<<3],head[N],q[N<<2],from[N],dis[N];
bool vis[N];
template <typename T> void read(T&t) {
t=0;
bool fl=true;
char p=getchar();
while (!isdigit(p)) {
if (p=='-') fl=false;
p=getchar();
}
do {
(t*=10)+=p-48;p=getchar();
}while (isdigit(p));
if (!fl) t=-t;
}
inline void add(int x,int y,int z,int t){
a[++tot]=y,f[tot]=z,fare[tot]=t,nxt[tot]=head[x],head[x]=tot;
}
inline int spfa(){
memset(dis,127,sizeof(dis));
h=t=0;
q[++t]=S;
dis[S]=0;
vis[S]=1;
while (h<t){
int u=q[++h];
for (int p=head[u];~p;p=nxt[p]){
if (dis[u]+fare[p]<dis[a[p]]&&f[p]>0){
dis[a[p]]=dis[u]+fare[p];
from[a[p]]=p;
if (!vis[a[p]]){
vis[a[p]]=1;
q[++t]=a[p];
}
}
}
vis[u]=0;
}
return dis[T];
}
signed main(){
read(n);
S=2*n+1,T=2*n+2,tot=1;
memset(head,-1,sizeof(head));
for (int i=1;i<=n;i++){
read(x);
add(i*2-1,T,x,0);
add(T,i*2-1,0,0);
add(S,i*2,x,0);
add(i*2,S,0,0);
}
read(f3),read(t1),read(f1),read(t2),read(f2);
for (int i=1;i<=n;i++){
add(S,i*2-1,INF,f3);
add(i*2-1,S,0,-f3);
}
for (int i=1;i<n;i++){
add(i*2,i*2+2,INF,0);
add(i*2+2,i*2,0,0);
}
for (int i=1;i<=n;i++){
if (i+t1>n) break;
add(i*2,i*2+t1*2-1,INF,f1);
add(i*2+t1*2-1,i*2,0,-f1);
}
for (int i=1;i<=n;i++){
if (i+t2>n) break;
add(i*2,i*2+t2*2-1,INF,f2);
add(i*2+t2*2-1,i*2,0,-f2);
}
while (spfa()!=dis[0]){
int now=T,maxflow=INF;
while (now!=S){
maxflow=min(maxflow,f[from[now]]);
now=a[from[now]^1];
}
now=T;
while (now!=S){
f[from[now]]-=maxflow;
f[from[now]^1]+=maxflow;
now=a[from[now]^1];
}
ans+=maxflow*dis[T];
fll+=maxflow;
}
printf("%lld",ans);
return 0;
}