特殊角的三角函数
sin(16π)=12
s
i
n
(
1
6
π
)
=
1
2
sin(13π)=3√2
s
i
n
(
1
3
π
)
=
3
2
cos(16π)=3√2
c
o
s
(
1
6
π
)
=
3
2
cos(13π)=12
c
o
s
(
1
3
π
)
=
1
2
sin(12π)=2√2
s
i
n
(
1
2
π
)
=
2
2
cos(12π)=2√2
c
o
s
(
1
2
π
)
=
2
2
tan(16π)=3√3
t
a
n
(
1
6
π
)
=
3
3
tan(13π)=3–√
t
a
n
(
1
3
π
)
=
3
tan(14π)=1
t
a
n
(
1
4
π
)
=
1
和差角公式
sin(a+b)=sin(a)∗cos(b)+cos(a)∗sin(b) s i n ( a + b ) = s i n ( a ) ∗ c o s ( b ) + c o s ( a ) ∗ s i n ( b )
sin(a−b)=sin(a)∗cos(b)−cos(a)∗sin(b) s i n ( a − b ) = s i n ( a ) ∗ c o s ( b ) − c o s ( a ) ∗ s i n ( b )
cos(a+b)=cos(a)∗cos(b)−sin(a)∗sin(b) c o s ( a + b ) = c o s ( a ) ∗ c o s ( b ) − s i n ( a ) ∗ s i n ( b )
cos(a−b)=cos(a)∗cos(b)+sin(a)∗sin(b) c o s ( a − b ) = c o s ( a ) ∗ c o s ( b ) + s i n ( a ) ∗ s i n ( b )
tan(a+b)=tan(a)+tan(b)1−tan(a)∗tan(b) t a n ( a + b ) = t a n ( a ) + t a n ( b ) 1 − t a n ( a ) ∗ t a n ( b )
tan(a−b)=tan(a)−tan(b)1+tan(a)∗tan(b) t a n ( a − b ) = t a n ( a ) − t a n ( b ) 1 + t a n ( a ) ∗ t a n ( b )
二倍角公式
cos(2a)=cos(a)2−sin(a)2=2∗cos(a)2−1=1−2∗sin(a)2 c o s ( 2 a ) = c o s ( a ) 2 − s i n ( a ) 2 = 2 ∗ c o s ( a ) 2 − 1 = 1 − 2 ∗ s i n ( a ) 2
sin(2a)=2∗sin(a)∗cos(a) s i n ( 2 a ) = 2 ∗ s i n ( a ) ∗ c o s ( a )
tan(2a)=2∗tan(a)1−tan(a)2 t a n ( 2 a ) = 2 ∗ t a n ( a ) 1 − t a n ( a ) 2
万能公式
tan(2a)=2∗tan(a)1−tan(a)2 t a n ( 2 a ) = 2 ∗ t a n ( a ) 1 − t a n ( a ) 2
cos(2a)=cos(a)2−sin(a)2cos(a)2+sin(a)2=1−tan(a)21+tan(a)2 c o s ( 2 a ) = c o s ( a ) 2 − s i n ( a ) 2 c o s ( a ) 2 + s i n ( a ) 2 = 1 − t a n ( a ) 2 1 + t a n ( a ) 2
sin(2a)=2∗sin(a)∗cos(a)cos(a)2+sin(a)2=2∗tan(a)1+tan(a)2 s i n ( 2 a ) = 2 ∗ s i n ( a ) ∗ c o s ( a ) c o s ( a ) 2 + s i n ( a ) 2 = 2 ∗ t a n ( a ) 1 + t a n ( a ) 2
辅助角公式
a∗sin(q)+b∗cos(q)=a2+b2−−−−−−√∗(aa2+b2√∗sin(q)+aa2+b2√∗cos(q))
a
∗
s
i
n
(
q
)
+
b
∗
c
o
s
(
q
)
=
a
2
+
b
2
∗
(
a
a
2
+
b
2
∗
s
i
n
(
q
)
+
a
a
2
+
b
2
∗
c
o
s
(
q
)
)
令
aa2+b2√=cos(j),ba2+b2√=sin(j)
a
a
2
+
b
2
=
c
o
s
(
j
)
,
b
a
2
+
b
2
=
s
i
n
(
j
)
原式=
a2+b2−−−−−−√∗(sin(q)∗cos(j)+cos(q)∗sin(j))=a2+b2−−−−−−√∗sin(q+j)
a
2
+
b
2
∗
(
s
i
n
(
q
)
∗
c
o
s
(
j
)
+
c
o
s
(
q
)
∗
s
i
n
(
j
)
)
=
a
2
+
b
2
∗
s
i
n
(
q
+
j
)