三角函数

这篇博客详细介绍了三角函数中的特殊角值,包括sin、cos和tan,并且讲解了和差角、二倍角、万能公式及辅助角公式等核心内容,帮助读者深入理解三角函数的基本应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

特殊角的三角函数

sin(16π)=12 s i n ( 1 6 π ) = 1 2
sin(13π)=32 s i n ( 1 3 π ) = 3 2
cos(16π)=32 c o s ( 1 6 π ) = 3 2
cos(13π)=12 c o s ( 1 3 π ) = 1 2
sin(12π)=22 s i n ( 1 2 π ) = 2 2
cos(12π)=22 c o s ( 1 2 π ) = 2 2
tan(16π)=33 t a n ( 1 6 π ) = 3 3
tan(13π)=3 t a n ( 1 3 π ) = 3
tan(14π)=1 t a n ( 1 4 π ) = 1

和差角公式

sin(a+b)=sin(a)cos(b)+cos(a)sin(b) s i n ( a + b ) = s i n ( a ) ∗ c o s ( b ) + c o s ( a ) ∗ s i n ( b )

sin(ab)=sin(a)cos(b)cos(a)sin(b) s i n ( a − b ) = s i n ( a ) ∗ c o s ( b ) − c o s ( a ) ∗ s i n ( b )

cos(a+b)=cos(a)cos(b)sin(a)sin(b) c o s ( a + b ) = c o s ( a ) ∗ c o s ( b ) − s i n ( a ) ∗ s i n ( b )

cos(ab)=cos(a)cos(b)+sin(a)sin(b) c o s ( a − b ) = c o s ( a ) ∗ c o s ( b ) + s i n ( a ) ∗ s i n ( b )

tan(a+b)=tan(a)+tan(b)1tan(a)tan(b) t a n ( a + b ) = t a n ( a ) + t a n ( b ) 1 − t a n ( a ) ∗ t a n ( b )

tan(ab)=tan(a)tan(b)1+tan(a)tan(b) t a n ( a − b ) = t a n ( a ) − t a n ( b ) 1 + t a n ( a ) ∗ t a n ( b )

二倍角公式

cos(2a)=cos(a)2sin(a)2=2cos(a)21=12sin(a)2 c o s ( 2 a ) = c o s ( a ) 2 − s i n ( a ) 2 = 2 ∗ c o s ( a ) 2 − 1 = 1 − 2 ∗ s i n ( a ) 2

sin(2a)=2sin(a)cos(a) s i n ( 2 a ) = 2 ∗ s i n ( a ) ∗ c o s ( a )

tan(2a)=2tan(a)1tan(a)2 t a n ( 2 a ) = 2 ∗ t a n ( a ) 1 − t a n ( a ) 2

万能公式

tan(2a)=2tan(a)1tan(a)2 t a n ( 2 a ) = 2 ∗ t a n ( a ) 1 − t a n ( a ) 2

cos(2a)=cos(a)2sin(a)2cos(a)2+sin(a)2=1tan(a)21+tan(a)2 c o s ( 2 a ) = c o s ( a ) 2 − s i n ( a ) 2 c o s ( a ) 2 + s i n ( a ) 2 = 1 − t a n ( a ) 2 1 + t a n ( a ) 2

sin(2a)=2sin(a)cos(a)cos(a)2+sin(a)2=2tan(a)1+tan(a)2 s i n ( 2 a ) = 2 ∗ s i n ( a ) ∗ c o s ( a ) c o s ( a ) 2 + s i n ( a ) 2 = 2 ∗ t a n ( a ) 1 + t a n ( a ) 2

辅助角公式

asin(q)+bcos(q)=a2+b2(aa2+b2sin(q)+aa2+b2cos(q)) a ∗ s i n ( q ) + b ∗ c o s ( q ) = a 2 + b 2 ∗ ( a a 2 + b 2 ∗ s i n ( q ) + a a 2 + b 2 ∗ c o s ( q ) )
aa2+b2=cos(j),ba2+b2=sin(j) a a 2 + b 2 = c o s ( j ) , b a 2 + b 2 = s i n ( j )
原式=
a2+b2(sin(q)cos(j)+cos(q)sin(j))=a2+b2sin(q+j) a 2 + b 2 ∗ ( s i n ( q ) ∗ c o s ( j ) + c o s ( q ) ∗ s i n ( j ) ) = a 2 + b 2 ∗ s i n ( q + j )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值