集合:具有共同性质的或合适一定条件的事物的全体,组成集合的这些个体成为元素。
集合之间常见的关系:包含(⊆),真包含(⊂),相等(=)。
笛卡尔积:设A,B为集合,以A中元素为第一元素,B中元素为第二元素构成有序对,所以这样的有序对组成的集合称为A与B的笛卡尔积,记作A×B。用符号化表示:A×B={<x,y>|x∈A∧y∈B}
对关系图的表示方法,一共有三种,简单的是集合,另外有两种,矩阵和关系图。
例题:
那么我们之前介绍了集合和关系R,那么现在介绍关系的n次幂。
设R为A上的关系,n为自然数,则R的n次幂定义:
(1)Rº={<x,x>|x∈A}
(2)?^(?+1)=?ⁿ ∘R
集合及二元关系,关系的n次幂
最新推荐文章于 2022-11-15 17:04:09 发布