Springboot 多数据源进行actuator监控

本文介绍如何在SpringBoot项目中实现多数据源的Actuator监控,并通过Prometheus展示监控数据。涉及SpringBoot版本2.0.8.RELEASE,以及多个依赖如micrometer-registry-prometheus等。

Springboot 多数据源进行actuator监控

在Spring Boot应用中,如果你配置了多数据源,并且希望使用Actuator来进行监控,你需要确保每个数据源都被正确地配置和注册,以便Actuator能够发现和监控它们。Actuator提供了一系列端点(endpoints)来监控和管理Spring Boot应用,包括健康检查(health)、指标(metrics)、信息等。本文介绍Springboot多数据源使用Prometheus进行监控。

环境

springboot2.0.8.RELEASE
spring-boot-starter-parent2.0.8.RELEASE
micrometer-registry-prometheus1.0.9
mybatis-plus-boot-starter3.1.0
dynamic-datasource-spring-boot-starter3.4.1

prometheus:v2.4.0 查看的1.8的文档

进行prometheus 查看此博客

1.配置多数据源的项目

pom

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>2.0.8.RELEASE</version>
        <relativePath/> <!-- lookup parent from repository -->
    </parent>
    <groupId>com.dalaoyang</groupId>
    <artifactId>springcloud_prometheus_dynamic_datasource</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <name>springcloud_prometheus_dynamic_datasource</name>
    <description>springcloud_prometheus_dynamic_datasource</description>

    <properties>
        <java.version>1.8</java.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>com.baomidou</groupId>
            <artifactId>mybatis-plus-boot-starter</artifactId>
            <version>3.1.0</version>
        </dependency>
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <scope>runtime</scope>
        </dependency>
        <dependency>
            <groupId>com.baomidou</groupId>
            <artifactId>dynamic-datasource-spring-boot-starter</artifactId>
            <version>3.4.1</version>
        </dependency>

        <!-- Tag-应用监控埋点actuator-->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-actuator</artifactId>
        </dependency>
        <!-- Tag-应用监控埋点actuator-->
        <!-- Tag-将actuator监控的指标转为prometheus格式-->
        <dependency>
            <groupId>io.micrometer</groupId>
            <artifactId>micrometer-registry-prometheus</artifactId>
            <version>1.0.9</version>
        </dependency>
        <dependency>
            <groupId>io.github.mweirauch</groupId>
            <artifactId>micrometer-jvm-extras</artifactId>
            <version>0.1.2</version>
        </dependency>
        <!-- Tag-将actuator监控的指标转为prometheus格式-->

    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
            </plugin>
        </plugins>
    </build>

    <repositories>
        <repository>
            <id>spring-milestones</id>
            <name>Spring Milestones</name>
            <url>https://repo.spring.io/milestone</url>
        </repository>
    </repositories>

</project>

application.yml

spring:
  application:
    name: springcloud_prometheu_dynamic_datasource
  ##数据库url
  datasource:
    dynamic:
      primary: mysql
      strict: true
      datasource:
        mysql:
          url: jdbc:mysql://192.168.0.229:43306/test?useUnicode=true&characterEncoding=utf8&useSSL=false&serverTimezone=CTT
          driver-class-name: com.mysql.jdbc.Driver
          username: root
          password: Cobbler1234!
          hikari:
            minIdle: 10
            maxPoolSize: 80
            connectionTimeout: 10000
            idleTimeout: 300000
            maxLifetime: 1800000
            connectionTestQuery: SELECT 1
            validationTimeout: 5000
            initializationFailTimeout: 1
        scsdb_1:
          username: SCS
          password: 123456
          url: jdbc:mysql://192.168.0.76:2200/bigdata?useUnicode=true&characterEncoding=UTF-8&zeroDateTimeBehavior=convertToNull&autoReconnect=true
          driver-class-name: com.mysql.jdbc.Driver
          hikari:
            minIdle: 10
            maxPoolSize: 80
            connectionInitSql: set slave;start backup;
            connectionTimeout: 10000
            idleTimeout: 300000
            maxLifetime: 1800000
            connectionTestQuery: SELECT 1
            validationTimeout: 5000
            initializationFailTimeout: 1
        scsop_1:
          username: SCS
          password: 123456
          url: jdbc:mysql://192.168.0.76:2200/bigdata?useUnicode=true&characterEncoding=UTF-8&zeroDateTimeBehavior=convertToNull&autoReconnect=true
          driver-class-name: com.mysql.jdbc.Driver
          hikari:
            minIdle: 10
            maxPoolSize: 80
            connectionInitSql: set slave;start backup;
            connectionTimeout: 10000
            idleTimeout: 300000
            maxLifetime: 1800000
            connectionTestQuery: SELECT 1
            validationTimeout: 5000
            initializationFailTimeout: 1

server:
  port: 9905

management:
  endpoints:
    web:
      exposure:
        include: "*"
        exclude: env,beans
  endpoint:
    metrics:
      enabled: true
    prometheus:
      enabled: true
  metrics:
    tags:
      application: ${spring.application.name}
    export:
      prometheus:
        enabled: true

启动类

package com.liuhm;

import io.micrometer.core.instrument.MeterRegistry;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.actuate.autoconfigure.metrics.MeterRegistryCustomizer;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

@SpringBootApplication
public class SpringcloudPrometheuDynamicDatasourceApplication {

    public static void main(String[] args) {
        SpringApplication.run(SpringcloudPrometheuDynamicDatasourceApplication.class, args);
    }

    @Bean
    MeterRegistryCustomizer<MeterRegistry> configurer(
            @Value("${spring.application.name}") String applicationName) {
        return (registry) -> registry.config().commonTags("application", applicationName);
    }
}


2. 测试,检查数据源情况

访问 http://localhost:9904/actuator/prometheus

请添加图片描述

发现只有mysql数据源,没得其他数据源

在这里插入图片描述

3.查找问题

发现只绑定了一个数据源的配置信息
在这里插入图片描述

多数据源bean有全部的数据源信息
在这里插入图片描述

4.解决问题

重写这个类的方法,在自己项目路径下创建org.springframework.boot.actuate.autoconfigure.metrics.jdbc

包,在此包创建HikariDataSourceMetricsPostProcessor,

修改如下
在这里插入图片描述

/*
 * Copyright 2012-2018 the original author or authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.springframework.boot.actuate.autoconfigure.metrics.jdbc;

import javax.sql.DataSource;

import com.baomidou.dynamic.datasource.DynamicRoutingDataSource;
import com.zaxxer.hikari.HikariDataSource;
import com.zaxxer.hikari.metrics.micrometer.MicrometerMetricsTrackerFactory;
import io.micrometer.core.instrument.MeterRegistry;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

import org.springframework.beans.factory.config.BeanPostProcessor;
import org.springframework.boot.jdbc.DataSourceUnwrapper;
import org.springframework.context.ApplicationContext;
import org.springframework.core.Ordered;

import java.util.Map;

/**
 * {@link BeanPostProcessor} that configures Hikari metrics. Such arrangement is necessary
 * because a {@link HikariDataSource} instance cannot be modified once its configuration
 * has completed.
 *
 * @author Stephane Nicoll
 */
class HikariDataSourceMetricsPostProcessor implements BeanPostProcessor, Ordered {

    private static final Log logger = LogFactory
            .getLog(HikariDataSourceMetricsPostProcessor.class);

    private final ApplicationContext context;

    private volatile MeterRegistry meterRegistry;

    HikariDataSourceMetricsPostProcessor(ApplicationContext context) {
        this.context = context;
    }

    @Override
    public Object postProcessAfterInitialization(Object bean, String beanName) {
        HikariDataSource hikariDataSource = determineHikariDataSource(bean);
        if (hikariDataSource != null) {
            Map<String, DataSource> dataSourceMap = ((DynamicRoutingDataSource) bean).getDataSources();
            for(String key: dataSourceMap.keySet()){
                HikariDataSource dataSource = determineHikariDataSource(dataSourceMap.get(key));
                bindMetricsRegistryToHikariDataSource(getMeterRegistry(), dataSource );
            }
        }
        return bean;
    }

    private HikariDataSource determineHikariDataSource(Object bean) {
        if (bean instanceof DataSource) {
            return DataSourceUnwrapper.unwrap((DataSource) bean, HikariDataSource.class);
        }
        return null;
    }

    private void bindMetricsRegistryToHikariDataSource(MeterRegistry registry,
                                                       HikariDataSource dataSource) {
        if (!hasExisingMetrics(dataSource)) {
            try {
                dataSource.setMetricsTrackerFactory(
                        new MicrometerMetricsTrackerFactory(registry));
            }
            catch (Exception ex) {
                logger.warn("Failed to bind Hikari metrics: " + ex.getMessage());
            }
        }
    }

    private boolean hasExisingMetrics(HikariDataSource dataSource) {
        return dataSource.getMetricRegistry() != null
                || dataSource.getMetricsTrackerFactory() != null;
    }

    private MeterRegistry getMeterRegistry() {
        if (this.meterRegistry == null) {
            this.meterRegistry = this.context.getBean(MeterRegistry.class);
        }
        return this.meterRegistry;
    }

    @Override
    public int getOrder() {
        return Ordered.HIGHEST_PRECEDENCE;
    }

}

多模块导入的情况下,该方法失效,就再将DataSourcePoolMetricsAutoConfiguration进行重写 ,在加个注解 @Primary
在这里插入图片描述

5. 测试

都有了
在这里插入图片描述

代码下载

<think>首先,用户的问题是:“我想配置Spring Boot应用以支持多个数据源,其中一个可能是Elasticsearch(ES)”。这涉及到配置Spring Boot应用来处理多个数据源,包括一个Elasticsearch数据源。 我需要参考提供的引用内容,因为它们可能包含相关信息。引用包括: - [^1]: 关于Spring Boot + ElasticSearch的CRUD及多数据源配置,提到了配置文件设置。 - [^2]: Spring Boot多数据源配置的深度避坑指南,包括数据源隔离、事务管理、连接池等。 - [^3]: spring boot整合多数据源es,包括版本选择和依赖配置。 - [^4]: dynamics-spring-data-elasticsearch-spring-boot-starter-es的多数据源配置。 用户的问题是关于配置多数据源,其中一个可能是Elasticsearch。所以,我需要整合这些信息,提供一个清晰的、结构化的回答。 回答结构:根据系统指令,回答应该结构清晰,帮助用户逐步解决问题。指令还说“回答中引用的段落末尾自然地添加引用标识”,所以我会在引用信息时添加[^数字]。 关键点: 1. **多数据源配置概述**:解释在Spring Boot中如何配置多个数据源。 2. **Elasticsearch数据源的特殊性**:因为Elasticsearch不是传统的关系型数据库,配置方式可能不同。 3. **步骤**:提供逐步指导,包括依赖、配置、代码示例。 4. **版本兼容性**:引用[^3]强调了版本兼容性,需要确保Spring Boot和Elasticsearch版本匹配。 5. **避坑指南**:引用[^2]提到了许多潜在问题,如事务管理、连接池等,我需要整合这些。 6. **代码示例**:提供代码片段,使用LaTeX格式,如独立公式使用$$...$$,行内使用$...$。 系统指令要求: - 行内数学表达式使用$...$,例如$x^2$。 - 独立公式使用$$...$$并单独成段。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 引用段落末尾添加引用标识。 最后,生成相关问题。 回答大纲: 1. **引言**:简要介绍多数据源配置的必要性和挑战。 2. **步骤1:添加依赖**:基于引用[^3],添加Spring Boot和Elasticsearch的依赖,注意版本兼容。 3. **步骤2:配置数据源**:配置多个数据源,包括关系型数据库和Elasticsearch。参考引用[^1]和[^4]。 4. **步骤3:定义数据源Bean**:使用Java配置类定义多个DataSource和ElasticsearchRestTemplate。参考引用[^2]。 5. **步骤4:事务管理**:处理多数据源的事务问题,参考引用[^2]。 6. **步骤5:连接池配置**:避免连接泄漏等,参考引用[^2]。 7. **步骤6:Elasticsearch特定配置**:如何配置Elasticsearch数据源,使用dynamics-spring-data-elasticsearch-starter(引用[^4])。 8. **代码示例**:提供配置类和简单的使用示例。 9. **注意事项**:总结版本兼容、事务等关键点。 10. **相关问题**:生成几个相关问题。 确保回答真实可靠,基于提供的引用。 现在,构建回答内容。</think>### Spring Boot多数据源配置(包括Elasticsearch) 在Spring Boot应用中配置多个数据源(例如关系型数据库和Elasticsearch)是一个常见需求,但也面临挑战,如数据源隔离、事务管理和版本兼容性。以下是一个结构化指南,基于最佳实践和避坑经验,逐步指导您完成配置。我会整合关键点,包括Elasticsearch(ES)的特殊处理,确保配置可靠。参考引用内容,我会在相关段落添加引用标识[^数字]。 --- #### **1. 理解多数据源架构** 在Spring Boot中,多数据源配置的核心是: - 每个数据源独立定义Bean(如`DataSource`或`ElasticsearchRestTemplate`)。 - 使用配置类隔离不同数据源,避免自动装配冲突。 - Elasticsearch作为非关系型数据源,需特殊处理客户端连接和版本匹配[^1][^3]。 数学表达示例(行内公式):在性能分析中,连接池大小$n$需满足$n \geq \text{并发请求数} / \text{平均查询时间}$,以避免瓶颈[^2]。 --- #### **2. 添加依赖:确保版本兼容** Elasticsearch与Spring Boot版本必须严格匹配,否则会报错。参考Maven依赖配置: - **关键依赖**:添加Spring Data Elasticsearch和JDBC驱动。 - **版本选择**:根据ES版本选择Spring Boot版本(参考引用[^3]的版本矩阵)。 ```xml <parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-parent</artifactId> <version>2.2.13.RELEASE</version> <!-- 示例版本,匹配ES 6.x --> </parent> <dependencies> <!-- 关系型数据库(如MySQL) --> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-jpa</artifactId> </dependency> <dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> </dependency> <!-- Elasticsearch数据源 --> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-elasticsearch</artifactId> <version>2.2.13.RELEASE</version> <!-- 必须与parent版本一致 --> </dependency> <!-- 多数据源工具(可选,简化配置) --> <dependency> <groupId>com.github.dynamic-datasource</groupId> <artifactId>dynamics-spring-data-elasticsearch-spring-boot-starter</artifactId> <version>3.5.0</version> <!-- 参考引用[^4] --> </dependency> </dependencies> ``` **注意事项**: - ES 7.x+需使用Spring Boot 2.3+,否则出现`NoNodeAvailableException`[^3]。 - 使用`dynamics-spring-data-elasticsearch-starter`可简化多ES数据源配置[^4]。 --- #### **3. 配置数据源:核心步骤** 通过配置文件(`application.yml`)和Java配置类定义数据源。**关键原则**:每个数据源独立配置,避免Spring Boot自动装配的默认行为。 ##### **3.1 配置文件(application.yml)** ```yaml spring: # 主数据源(关系型数据库,如MySQL) datasource: primary: url: jdbc:mysql://localhost:3306/db1 username: root password: root driver-class-name: com.mysql.cj.jdbc.Driver secondary: url: jdbc:mysql://localhost:3306/db2 username: user password: pass # Elasticsearch数据源配置 data: elasticsearch: cluster-nodes: 100.200.33.203:9300,100.200.33.204:9300,100.200.33.205:9300 # ES集群节点 cluster-name: elasticsearch6 # 集群名称,必须匹配 repositories: enabled: true # 多ES数据源时,使用dynamics-starter(见步骤4)[^1][^4] ``` ##### **3.2 Java配置类:定义Bean** 创建配置类隔离不同数据源。**避坑点**:必须手动定义`DataSource`和`EntityManager`,避免Spring自动绑定默认数据源[^2]。 ```java @Configuration @EnableTransactionManagement public class DataSourceConfig { // 配置主数据源(关系型数据库) @Bean @ConfigurationProperties(prefix = "spring.datasource.primary") public DataSource primaryDataSource() { return DataSourceBuilder.create().build(); } // 配置次数据源(关系型数据库) @Bean @ConfigurationProperties(prefix = "spring.datasource.secondary") public DataSource secondaryDataSource() { return DataSourceBuilder.create().build(); } // 配置Elasticsearch RestTemplate @Bean public ElasticsearchRestTemplate elasticsearchTemplate(Client client) { return new ElasticsearchRestTemplate(client); } // 事务管理器(主数据源) @Bean public PlatformTransactionManager primaryTransactionManager(@Qualifier("primaryDataSource") DataSource dataSource) { return new DataSourceTransactionManager(dataSource); } } ``` --- #### **4. 处理Elasticsearch多数据源** Elasticsearch配置需额外处理,因为Spring Data Elasticsearch默认只支持单个实例。**解决方案**: - **使用dynamics-starter**(引用[^4]):自定义Service继承`ElasticSearchServiceImpl`,并配置多ES数据源。 - **配置类示例**: ```java @Configuration public class EsConfig extends AbstractElasticSearchSqlConfig { @Override public ElasticSearchSqlConfig loadElasticSearchSqlConfig() { return ElasticSearchSqlConfig.builder() .addDataSource("es1", "es1.properties") // 第一个ES数据源 .addDataSource("es2", "es2.properties") // 第二个ES数据源 .build(); } } ``` - **properties文件**(`es1.properties`): ```properties elasticsearch.cluster-nodes=es-node1:9300 elasticsearch.cluster-name=es-cluster1 ``` **优势**:此方式自动处理客户端连接池,避免连接泄漏[^4]。 --- #### **5. 事务与连接池避坑指南** 多数据源下事务和连接池是常见故障点: - **事务管理**:为每个数据源定义独立`PlatformTransactionManager`。使用`@Transactional(transactionManager = "primaryTransactionManager")`指定事务管理器。分布式事务建议整合Atomikos(XA协议)[^2]。 - **连接池优化**: - 添加连接泄漏检测:在`application.yml`中设置`spring.datasource.hikari.leak-detection-threshold=60000`(单位ms)。 - 动态调整参数:基于负载设置`maximum-pool-size`,公式为: $$ \text{maxPoolSize} = \frac{\text{最大并发请求数}}{\text{平均查询时间(秒)}} \times 1.5 $$ 避免连接耗尽[^2]。 --- #### **6. 完整示例:整合与使用** 以下是一个简化示例,展示如何在Service层使用多数据源: ```java @Service public class DataService { @Autowired @Qualifier("primaryDataSource") private DataSource primaryDataSource; // 关系型数据源1 @Autowired private ElasticsearchRestTemplate esTemplate; // ES数据源 @Transactional(transactionManager = "primaryTransactionManager") public void saveData(User user) { // 保存到MySQL jdbcTemplate.update("INSERT INTO users VALUES (?,?)", user.getId(), user.getName()); // 保存到Elasticsearch IndexQuery query = new IndexQueryBuilder() .withObject(user) .build(); esTemplate.index(query); } } ``` **运行要求**:确保ES集群健康,使用`GET /_cluster/health`检查状态。 --- #### **7. 关键注意事项** 1. **版本兼容性**:Spring BootSpring Data Elasticsearch和ES版本必须严格匹配(参考[^3]的版本表)。 2. **连接池监控**:暴露`/actuator/metrics`监控连接池指标,设置慢SQL熔断机制[^2]。 3. **测试**:在本地使用Docker启动ES集群测试多数据源。 4. **性能**:ES数据源查询延迟$t$应满足$t \leq 100\text{ms}$,否则优化索引设计[^1]。 --- ### 相关问题 1. 如何监控Spring Boot多数据源的连接池健康状态? 2. 在Spring Boot中,如何处理Elasticsearch版本升级带来的兼容性问题? 3. 多数据源下,如何实现跨数据源(如MySQL和Elasticsearch)的分布式事务? 4. 使用ShardingSphere整合多数据源时,有哪些常见避坑点(如Hint强制路由)? 通过以上步骤,您可高效配置Spring Boot多数据源应用。如果遇到具体问题(如版本冲突),请提供更多细节,我会进一步优化方案。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

liuhm~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值