Hive优化
HiveFetch抓取:
在 hive-default.xml.template 文件中 hive.fetch.task.conversion 默认是 more,老版本 hive 默认是 minimal,该属性修改为 more 以后,在全局查找、字段查找、limit 查找等都不 走mapreduce。(如果设置为none,则所有查询都是用mapreduce)
Hive本地模式:
大多数的 Hadoop Job 是需要 Hadoop 提供的完整的可扩展性来处理大数据集的。不过,有时 Hive 的输入数据量是非常小的。在这种情况下,为查询触发执行任务消耗的时间可能会比实际 job 的执行时间要多的多。对于大多数这种情况,Hive 可以通过本地模式在单台机器上处理所有的任务。对于小数据集,执行时间可以明显被缩短。用户可以通过设置 hive.exec.mode.local.auto 的值为 true,来让 Hive 在适当的时候自动启动这个优化。
Hive优化表:
小表、大表 Join:
将 key 相对分散,并且数据量小的表放在 join 的左边,这样可以有效减少内存溢出错发生的几率;再进一步,可以使用 Group 让小的维度表(1000 条以下的记录条数)先进内存。在 map 端完成 reduce。实际测试发现:新版的 hive 已经对小表 JOIN 大表和大表 JOIN 小表进行了优化。小表放在左边和右边已经没有明显区别。
大表 Join 大表:
(1) 空 KEY 过滤有时 join 超时是因为某些 key 对应的数据太多,而相同 key 对应的数据都会发送到相同的 reducer 上,从而导致内存不够。此时我们应该仔细分析这些异常的 key,很多情况下,这些 key对应的数据是异常数据,我们需要在 SQL 语句中进行过滤。
(2) 空 key 转换有时虽然某个 key 为空对应的数据很多,但是相应的数据不是异常数据,必须要包含在join 的结果中,此时我们可以表 a 中 key 为空的字段赋一个随机的值,使得数据随机均 匀地分不到不同的 reducer 上。
MapJoin:
如果不指定 MapJoin 或者不符合 MapJoin 的条件,那么 Hive 解析器会将 Join 操作转换成 Common Join,即:在 Reduce 阶段完成 join。容易发生数据倾斜。可以用 MapJoin 把小表全部加载到内存在 map 端进行 join,避免 reducer 处理。
Group By:
默认情况下,Map 阶段同一 Key 数据分发给一个 reduce,当一个 key 数据过大时就倾斜了。并不是所有的聚合操作都需要在 Reduce 端完成,很多聚合操作都可以先在 Map 端进行部分聚合,最后在 Reduce 端得出最终结果。
当选项设定为 true,生成的查询计划会有两个 MR Job。第一个 MR Job 中,Map 的输出结果会随机分布到 Reduce 中,每个 Reduce 做部分聚合操作,并输出结果,这样处理的结果是相同的 Group By Key 有可能被分发到不同的 Reduce 中,从而达到负载均衡的目的;第二个 MR Job 再根据预处理的数据结果按照 Group By Key 分布到 Reduce 中(这个过程可以保证相同的 Group By Key 被分布 到同一个 Reduce 中),最后完成最终的聚合操作。
Count(Distinct) 去重统计:
select count(id) from (select id from bigtable group by id) a; 虽然会多用一个 Job 来完成,但在数据量大的情况下,这个绝对是值得的。
笛卡尔积:
尽量避免笛卡尔积,join 的时候不加 on 条件,或者无效的 on 条件,Hive 只能使用 1个 reducer 来完成笛卡尔积。
行列过滤
列处理:在 SELECT 中,只拿需要的列,如果有,尽量使用分区过滤,少用 SELECT *。行处理:在分区剪裁中,当使用外关联时,如果将副表的过滤条件写在 Where 后面,那么就会先全表 关联,之后再过滤。
动态分区调整:
关系型数据库中,对分区表 Insert 数据时候,数据库自动会根据分区字段的值,将数据插入到相应的分区中,Hive 中也提供了类似的机制,即动态分区(Dynamic Partition),只不过需要相应的配置
数据倾斜:
- 1.合理设置 Map 数
1)通常情况下,作业会通过 input 的目录产生一个或者多个 map 任务。
主要的决定因素有:input 的文件总个数,input 的文件大小,集群设置的文件块大小。
2)是不是 map 数越多越好?
答案是否定的。如果一个任务有很多小文件(远远小于块大小 128m),则每个小文件也会被当做一个块,用一个 map 任务来完成,而一个 map 任务启动和初始化 的时间远远大 于逻辑处理的时间,就会造成很大的资源浪费。而且,同时可执行的 map 数是受限的。
3)是不是保证每个 map 处理接近 128m 的文件块,就高枕无忧了?
答案也是不一定。比如有一个 127m 的文件,正常会用一个 map 去完成,但这个文件只有一个或者两个小字段,却有几千万的记录,如果 map 处理的逻辑比较复杂,用一个 map任务去 做,肯定也比较耗时。针对上面的问题 2 和 3,我们需要采取两种方式来解决:即减少 map 数和增加 map 数;
2.小文件进行合并
在 map 执行前合并小文件,减少 map 数:CombineHiveInputFormat 具有对小文件进行合并的功能(系统默认的格式)。HiveInputFormat 没有对小文件合并功能。
set hive.input.format= org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
3.复杂文件增加 Map 数
当 input 的文件都很大,任务逻辑复杂,map 执行非常慢的时候,可以考虑增加 Map数,来使得每个 map 处理的数据量减少,从而提高任务的执行效率。增加 map 的方法为:根据
computeSliteSize(Math.max(minSize,Math.min(maxSize,blocksize)))=blocksize=128M 公式,调整 maxSize 最大值。让 maxSize 最大值低于 blocksize 就可以增加 map 的个数。
set mapreduce.input.fileinputformat.split.maxsize=100;
4.合理设置 Reduce
每个 Reduce 处理的数据量默认是 256MB(可以看出map任务和输入文件大小数量集群设置有关,reduce和map给的数据量有关) :hive.exec.reducers.bytes.per.reducer=256000000 每个任务最大的 reduce 数,默认为 1009:hive.exec.reducers.max=1009
调整 reduce 个数方法:set mapreduce.job.reduces = 15;
reduce 个数并不是越多越好:过多的启动和初始化 reduce 也会消耗时间和资源;另外,有多少个 reduce,就会有多少个输出文件,如果生成了很多个小文件,那么如果这些小文 件作为下一个任务的输入,则也会出现小文件过多的问题;在设置 reduce 个数的时候也需要考虑这两个原则:处理大数据量利用合适的 reduce 数;使单个 reduce 任务处理数据量大小要合适;
5.并行执行
Hive 会将一个查询转化成一个或者多个阶段。这样的阶段可以是 MapReduce 阶段、抽样阶段、合并阶段、limit 阶段。或者 Hive 执行过程中可能需要的其他阶段。默认情况下,Hive 一次只会执行一个阶段。不过,某个特定的 job 可能包含众多的阶段,而这些阶段可能并非完全互相依赖的,也就是说有些阶段是可以并行执行的,这样可能使得整个 job 的执行时间缩 短。不过,如果有更多的阶段可以并行执行,那么 job 可能就越快完成。
6.严格模式
开启严格模式需要修改 hive.mapred.mode 值为 strict,开启严格模式可以禁止 3 种类型的查询。
1.对于分区表,除非 where 语句中含有分区字段过滤条件来限制范围,否则不允许执行。换句话说,就是用户不允许扫描所有分区。进行这个限制的原因是,通常分区表都拥有非常
大的数据集,而且数据增加迅速。没有进行分区限制的查询可能会消耗令人不可接受的巨大资源来处理这个表。
2)对于使用了 order by 语句的查询,要求必须使用 limit 语句。因为 order by 为了执行排序过程会将所有的结果数据分发到同一个 Reducer 中进行处理,强制要求用户增加这个 LIMIT
语句可以防止 Reducer 额外执行很长一段时间。
3)限制笛卡尔积的查询。对关系型数据库非常了解的用户可能期望在执行 JOIN 查询的时候不使用 ON 语句而是使用 where 语句,这样关系数据库的执行优化器就可以高效地将WHERE 语句转化成那个 ON 语句。不幸的是,Hive 并不会执行这种优化,因此,如果表足够大,那么这个查询就会出现不可控的情况。
7.JVM 重用
JVM 重用是 Hadoop 调优参数的内容,其对 Hive 的性能具有非常大的影响,特别是对于很难避免小文件的场景或 task 特别多的场景,这类场景大多数执行时间都很短。
Hadoop 的默认配置通常是使用派生 JVM 来执行 map 和 Reduce 任务的。这时 JVM 的启动过程可能会造成相当大的开销,尤其是执行的 job包含有成百上千task任务的情况。JVM重用可以使得 JVM 实例在同一个 job 中重新使用 N 次。N 的值可以在 Hadoop 的mapred-site.xml 文件中进行配置(mapreduce.job.jvm.numtasks)通常在 10-20 之间,具体多少需要根据具体业务场景测试得出。
这个功能的缺点是,开启 JVM 重用将一直占用使用到的 task 插槽,以便进行重用,直到任务完成后才能释放。如果某个“不平衡的”job 中有某几个 reduce task 执行的时间要比其
他 Reduce task 消耗的时间多的多的话,那么保留的插槽就会一直空闲着却无法被其他的 job使用,直到所有的 task 都结束了才会释放。
8.推测执行
Hadoop 采用了推测执行(Speculative Execution)机制,它根据一定的法则推测出“拖后腿”的任务,并为这样的任务启动一个备份任务,让该任务与原始任务同时处理同一份数据,并最 终选用最先成功运行完成任务的计算结果作为最终结果。
设置开启推测执行参数:Hadoop 的 mapred-site.xml 文件中进行配置:mapreduce.map.speculative=true mapreduce.reduce.speculative=true
不过 hive 本身也提供了配置项来控制 reduce-side 的推测执行:hive.mapred.reduce.tasks.speculative.execution=true 如果用户对于执行时间非常敏感的话,建议关闭,因为非常费时间
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------2019.12.1