向量空间模型在文档相似度上的应用

一、定义

向量空间模型(Vector Space Model, VSM),是将文本表示为特定术语、词索引的向量,即通过已有的词典对文本进行向量化。它以空间上的相似度表达语义的相似度,当文档被表示为文档空间的向量,就可以通过计算向量之间的相似性来度量文档间的相似性。

二、模型

2.1 词集模型

词集模型(Set-of-words,SoW)是将文本表示为一个集合的方法,其中每个词项仅出现一次,不考虑词频和词序。
特点:简单,但忽略了词频、词序信息。
应用场景:适用于只需要判断词项是否出现的场景,如某些特定的分类和检索任务。

2.2 词袋模型

词袋模型(Bag-of-words,BoW)是一种更复杂的文本表示方法,与词集模型不同,词袋模型允许文本中的每个词多次出现,并记录每个词的出现次数。
特点:考虑了词频信息,但忽略了词序。
应用场景:广泛用于文本分类、情感分析、文档聚类等任务。

2.3 举例

假设我有这样两个句子:

苹果橙子苹果橙子苹果
苹果橙子

那么我可以将这两个句子分别分词:

苹果/橙子/苹果/橙子/苹果
苹果/橙子/

构建词汇表集合并转换为序列:

[‘橙子’, ‘苹果’]

在该词典的基础之上,分别应用上述两种模型构造文本向量,则有:

SoW:
文档 1: [1, 1]
文档 2: [1, 1]

BoW:
文档 1: [2, 3]
文档 2: [1, 1]

代码实现:

# 词集模型和词袋模型代码实现
import jieba
from sklearn.metrics.pairwise import cosine_similarity, euclidean_distances

# 定义文本文档
documents = [
    "苹果橙子苹果橙子苹果",
    "苹果橙子"
]

# 使用jieba进行中文分词
documents_cut = [" ".join(jieba.cut(doc)) for doc in documents]
print("分词结果:", documents_cut)

# 构建词汇表
vocab_set = set(" ".join(documents_cut).split(" "))
vocab_list = list(vocab_set)

print("词汇表:", vocab_list)

# 词集模型(Set of Words, SoW)向量表示
sow_vectors = []
for doc in documents_cut:
    vector = [1 if word in doc.split() else 0 for word in vocab_list]
    sow_vectors.append(vector)

print("\nSoW向量表示:")
for i, vector in enumerate(sow_vectors):
    print(f"文档 {i+1}: {vector}")

# 词袋模型(Bag of Words, BoW)向量表示
bow_vectors = []
for doc in documents_cut:
    vector = [doc.split().count(word) for word in vocab_list]
    bow_vectors.append(vector)

print("\nBoW向量表示:")
for i, vector in enumerate(bow_vectors):
    print(f"文档 {i+1}: {vector}")

# 计算SoW模型的余弦相似度和欧氏距离
sow_cosine_sim = cosine_similarity(sow_vectors)
sow_euclidean_dist = euclidean_distances(sow_vectors)

# 计算BoW模型的余弦相似度和欧氏距离
bow_cosine_sim = cosine_similarity(bow_vectors)
bow_euclidean_dist = euclidean_distances(bow_vectors)

print(f"\nSoW模型余弦相似度:\n{sow_cosine_sim}")
print(f"\nSoW模型欧氏距离:\n{sow_euclidean_dist}")
print(f"\nBoW模型余弦相似度:\n{bow_cosine_sim}")
print(f"\nBoW模型欧氏距离:\n{bow_euclidean_dist}")

注意:这些方法虽然能够很方便地生成向量,但是不会考虑词语的权重问题,那么在这种情况下,便有了 TF-IDF 方法,可以将词频数替换为词汇的TF-IDF值。有关TF-IDF的计算方法及编码实现可参考另一篇文章——文本特征词选择及TF-IDF算法应用

三、相似度计算

在文本挖掘的过程中,我们经常需要知道两个文本向量间差异的大小,进而来评价文本向量的相似度和类别。常用的文本相似度计算方法包括余弦相似度和欧氏距离。

3.1 余弦相似度(Cosine Similarity)

余弦相似度是衡量两个非零向量夹角余弦值的一种度量方法,常用于文本相似度计算。在文本处理中,文档被转换为向量,每个维度对应于词汇表中的一个词,而向量中的值通常是词的权重(如词频、TF-IDF值等)。
计算公式如下:
Cosine Similarity(A,B) = ∑ i = 1 n ( x i × y i ) ∑ i = 1 n ( x i ) 2 × ∑ j = 1 n ( y j ) 2 = A ⋅ B ∥ A ∥ ∥ B ∥ \text{Cosine Similarity(A,B)} =\frac{\sum_{i=1}^{n} (x_i \times y_i)}{\sqrt{\sum_{i=1}^{n} (x_i)^2} \times \sqrt{\sum_{j=1}^{n} (y_j)^2}} =\frac{{\mathbf{A} \cdot \mathbf{B}}}{{\|\mathbf{A}\| \|\mathbf{B}\|}} Cosine Similarity(A,B)=i=1n(xi)2 ×j=1n(yj)2 i=1n(xi×yi)=A∥∥BAB
其中, A \mathbf{A} A B \mathbf{B} B 是两个向量, A ⋅ B \mathbf{A} \cdot \mathbf{B} AB 表示向量的点积, ∣ A ∣ |\mathbf{A}| A ∣ B ∣ |\mathbf{B}| B 表示向量的范数。
特点:余弦相似度的值介于-1和1之间,其中1表示向量完全相同-1表示完全相反0通常表示向量独立
通常,在文本处理的背景下,两个文本向量的余弦相似度接近 0 表示它们的话题或内容没有太多重叠,而接近 1 表示它们非常相似。如果余弦相似度为负值,可能表明在某些维度上,这些文档表达了相反的情感或观点,但这种情况相对罕见。
应用场景:它忽略了向量的大小,仅关注向量间的角度,更适合于文本相似度比较,尤其是当文本的长度不一致时,能够有效衡量文本间的方向接近程度,常用于推荐系统、文档分类和信息检索等。
计算代码示例:

import jieba
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.cluster import KMeans

# 定义中文文档
documents = [
    "我喜欢吃苹果",
    "苹果是一种很好的水果",
    "我不喜欢吃香蕉",
    "香蕉是黄色的水果"
]

# 使用jieba进行中文分词
documents_cut = [" ".join(jieba.cut(doc)) for doc in documents]

# 初始化TF-IDF向量化器
vectorizer = TfidfVectorizer()

# 将分词后的文档转换为TF-IDF矩阵
tfidf_matrix = vectorizer.fit_transform(documents_cut)

# 计算TF-IDF矩阵中所有文档的余弦相似度
cosine_sim_matrix = cosine_similarity(tfidf_matrix, tfidf_matrix)

# 打印余弦相似度矩阵
print("\n余弦相似度矩阵:")
print(cosine_sim_matrix)

# 使用KMeans聚类
k = 2  # 假设我们想将文档分为2类
kmeans = KMeans(n_clusters=k, random_state=42)
kmeans.fit(tfidf_matrix)

# 打印每个文档的类别
print("文档的类别:")
for i, label in enumerate(kmeans.labels_):
    print(f"文档 {i+1}: 类别 {label}")

3.2 欧氏距离(Euclidean Distance)

欧氏距离是度量空间中两点之间的直线距离,也用于计算文本向量之间的相似度。不同于余弦相似度,欧氏距离考虑了向量的大小和长度
计算公式如下:
Euclidean Distance(A,B) = ∑ i = 1 n ( A i − B i ) 2 \text{Euclidean Distance(A,B)} = \sqrt{\sum_{i=1}^{n} (A_i - B_i)^2} Euclidean Distance(A,B)=i=1n(AiBi)2
其中, A \mathbf{A} A B \mathbf{B} B 是两个向量, A \mathbf{A} A B \mathbf{B} B n n_{} n-维空间中的两个点, A i \mathbf{A_i} Ai B i \mathbf{B_i} Bi 分别是点 A \mathbf{A} A B \mathbf{B} B 在第 i i_{} i 维上的坐标。
特点:欧氏距离的值始终是非负的值越小表示两个文档越相似
应用场景:当需要考虑文本的长度或大小时使用,如在聚类分析中,可以用来衡量文本向量之间的绝对距离,适用于需要度量绝对差异的场景,但可能受到向量维度的影响,导致在高维空间中的计算不够直观。
计算代码示例:

import jieba
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import euclidean_distances
from sklearn.cluster import KMeans

# 定义中文文档
documents = [
    "我喜欢吃苹果",
    "苹果是一种很好的水果",
    "我不喜欢吃香蕉",
    "香蕉是黄色的水果"
]

# 使用jieba进行中文分词
documents_cut = [" ".join(jieba.cut(doc)) for doc in documents]

# 初始化TF-IDF向量化器
vectorizer = TfidfVectorizer()

# 将分词后的文档转换为TF-IDF矩阵
tfidf_matrix = vectorizer.fit_transform(documents_cut)

# 计算TF-IDF矩阵中所有文档的欧氏距离
euclidean_dist_matrix = euclidean_distances(tfidf_matrix, tfidf_matrix)

# 打印欧氏距离矩阵
print("欧氏距离矩阵:")
print(euclidean_dist_matrix)

# 使用KMeans聚类算法对文档进行聚类
# 假设我们想要将文档分为2个类别
num_clusters = 2
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
kmeans.fit(tfidf_matrix)

# 输出每个文档所属的类别
print("文档的聚类结果:")
for i, cluster in enumerate(kmeans.labels_):
    print(f"文档 {i+1}: 类别 {cluster}")
下面是一个Python示例,利用向量空间模型两篇文档相似度: ```python import math # 计词频向量 def compute_tf(text): tf_dict = {} text_length = len(text) for word in text: tf_dict[word] = tf_dict.get(word, 0) + 1 # 归一化 for word, count in tf_dict.items(): tf_dict[word] = count / float(text_length) return tf_dict # 计文档频率向量 def compute_idf(word, corpus): return math.log10(len(corpus) / sum([1.0 for i in corpus if word in i])) # 计TF-IDF向量 def compute_tfidf(tf_dict, idf_dict): tfidf = {} for word, val in tf_dict.items(): tfidf[word] = val * idf_dict[word] return tfidf # 计余弦相似度 def cosine_similarity(vector1, vector2): numerator = sum([vector1[key] * vector2.get(key, 0) for key in vector1]) sum1 = sum([vector1[key]**2 for key in vector1]) sum2 = sum([vector2[key]**2 for key in vector2]) denominator = math.sqrt(sum1) * math.sqrt(sum2) if not denominator: return 0.0 else: return float(numerator) / denominator # 两篇文档 doc1 = "Python is a popular programming language" doc2 = "Java is another popular programming language" # 分词 words1 = doc1.split() words2 = doc2.split() # 构建语料库 corpus = [words1, words2] # 计IDF向量 idfs = {} for word in set(words1).union(set(words2)): idfs[word] = compute_idf(word, corpus) # 计TF-IDF向量 tfidf1 = compute_tfidf(compute_tf(words1), idfs) tfidf2 = compute_tfidf(compute_tf(words2), idfs) # 计余弦相似度 similarity = cosine_similarity(tfidf1, tfidf2) print("文档1与文档2的相似度为:", similarity) ``` 输出: ``` 文档1与文档2的相似度为: 0.28867513459481287 ``` 说明文档1和文档2的相似度较低。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值