一、定义
向量空间模型(Vector Space Model, VSM),是将文本表示为特定术语、词索引的向量,即通过已有的词典对文本进行向量化。它以空间上的相似度表达语义的相似度,当文档被表示为文档空间的向量,就可以通过计算向量之间的相似性来度量文档间的相似性。
二、模型
2.1 词集模型
词集模型(Set-of-words,SoW)是将文本表示为一个集合的方法,其中每个词项仅出现一次,不考虑词频和词序。
特点:简单,但忽略了词频、词序信息。
应用场景:适用于只需要判断词项是否出现的场景,如某些特定的分类和检索任务。
2.2 词袋模型
词袋模型(Bag-of-words,BoW)是一种更复杂的文本表示方法,与词集模型不同,词袋模型允许文本中的每个词多次出现,并记录每个词的出现次数。
特点:考虑了词频信息,但忽略了词序。
应用场景:广泛用于文本分类、情感分析、文档聚类等任务。
2.3 举例
假设我有这样两个句子:
苹果橙子苹果橙子苹果
苹果橙子
那么我可以将这两个句子分别分词:
苹果/橙子/苹果/橙子/苹果
苹果/橙子/
构建词汇表集合并转换为序列:
[‘橙子’, ‘苹果’]
在该词典的基础之上,分别应用上述两种模型构造文本向量,则有:
SoW:
文档 1: [1, 1]
文档 2: [1, 1]
BoW:
文档 1: [2, 3]
文档 2: [1, 1]
代码实现:
# 词集模型和词袋模型代码实现
import jieba
from sklearn.metrics.pairwise import cosine_similarity, euclidean_distances
# 定义文本文档
documents = [
"苹果橙子苹果橙子苹果",
"苹果橙子"
]
# 使用jieba进行中文分词
documents_cut = [" ".join(jieba.cut(doc)) for doc in documents]
print("分词结果:", documents_cut)
# 构建词汇表
vocab_set = set(" ".join(documents_cut).split(" "))
vocab_list = list(vocab_set)
print("词汇表:", vocab_list)
# 词集模型(Set of Words, SoW)向量表示
sow_vectors = []
for doc in documents_cut:
vector = [1 if word in doc.split() else 0 for word in vocab_list]
sow_vectors.append(vector)
print("\nSoW向量表示:")
for i, vector in enumerate(sow_vectors):
print(f"文档 {
i+1}: {
vector}")
# 词袋模型(Bag of Words, BoW)向量表示
bow_vectors = []
for doc in documents_cut:
vector = [doc.split().count(word) for word in vocab_list]
bow_vectors.append(vector)
print("\nBoW向量表示:")
for i, vector in enumerate(bow_vectors):
print(f"文档 {
i+1}: {
vector}")
# 计算SoW模型的余弦相似度和欧氏距离
sow_cosine_sim = cosine_similarity(sow_vectors)
sow_euclidean_dist = euclidean_distances(sow_vectors)
# 计算BoW模型的余弦相似度和欧氏距离
bow_cosine_sim = cosine_similarity(bow_vectors)
bow_euclidean_dist = euclidean_distances(bow_vectors)
print(f"\nSoW模型余弦相似度:\n{
sow_cosine_sim}")