yolox
暄染落墨
这个作者很懒,什么都没留下…
展开
-
yolox全解析
head头的三个分支输出为202085(stride=32),404085(stride=16),808085(stride=8)。因此,预测框的大小分别为3232,1616,8*8。标签分配:挑选正样本锚框,两个步骤:初步筛选,SimOTA。初步筛选有两个步骤:根据中心点筛选,根据目标框筛选。SimOTA有四个步骤:1.初筛正样本信息提取2.Loss函数计算3.cost计算4.SimOTA...原创 2021-08-31 14:31:22 · 1544 阅读 · 0 评论 -
yolox-backbone详解之CSPLayer(含代码
densenetdensenet评价优点:1.更强的梯度流动2.减少了参数数量3.保存了低维度的特征缺点:进行了多次concat操作,导致显存占用过大cspdensenet评价:优点:1.加强CNN的学习能力2.消除计算瓶颈3.降低内存成本在此进行对比,densenet:64*64*1*1+64*64*3*3+64*64*1*1=45056cspdensenet:(64*32*1*1)*2+32*32*1*1+32*32*3*3+64*64*1*1=18432所以,可见参数量大原创 2021-08-26 17:25:27 · 15383 阅读 · 0 评论 -
yolox-backbone详解之Focus(含代码
目录一、CSPDarknet1.Focus2.CSPNet一、CSPDarknet1.FocusFocus:下采样效果,关于facus的理解https://blog.csdn.net/qq_39056987/article/details/112712817原issue的链接https://github.com/ultralytics/yolov5/discussions/3181m1 = Focus(3, 64, 3) # YOLOv5 single layerm2 = nn.Sequent原创 2021-08-26 10:06:34 · 1507 阅读 · 0 评论