不可不说的Java“锁”事

前言 Java提供了种类丰富的锁,每种锁因其特性的不同,在适当的场景下能够展现出非常高的效率。本文旨在对锁相关源码(本文中的源码来自JDK 8和Netty 3.10.6)、使用场景进行举例,为读者介绍主流锁的知识点,以及不同的锁的适用场景。 Java中往往是按照是否含有某一特性来定义锁,我们通...

2018-12-26 22:22:32

阅读数 46

评论数 0

数据竞赛系列

1.方法论 1.1 EDA 传统问题低维度特征可视化与强特征构造:https://www.kesci.com/apps/home/project/59f687e1c5f3f511952baca0 时间序列问题EDA的分析角度,时序必备背景知识(2.1和2.2是翻译的经典时序书籍Forecas...

2018-07-27 15:05:19

阅读数 586

评论数 0

海量数据处理:十道面试题与十个海量数据处理方法总结(大数据算法面试题)

第一部分、十道海量数据处理面试题1、海量日志数据,提取出某日访问百度次数最多的那个IP。      首先是这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有个2^32个IP。同样可以采用映射的方法,比如模1000,把整个大文件映射为1000个小文件,再...

2018-06-09 17:11:57

阅读数 93

评论数 0

Python熵权法确定权重

熵权法赋权是一种客观赋权方法, 在一些评价中, 通过对熵的计算确定权重, 就是根据各项评价指标值的差异程度, 确定各评价指标的权重。详细介绍及计算公式可参考文献[1]。 主要步骤包括(1)原始数据矩阵进行标准化(2)定义熵(3)定义熵权。具体步骤也可参考https://blog.csdn.net...

2019-01-22 10:30:10

阅读数 5

评论数 0

适合于高速道路交通研究的库------Einspy

github地址:https://github.com/xiongbeer/Eins 文档地址:https://veinsdocs.readthedocs.io/zh_CN/latest/index.html 评价:感觉比simpy更加专业。但是没有实际测试,唯一坏处,使用python2.7....

2019-01-20 13:44:47

阅读数 11

评论数 0

Python中更改Tor身份

https://stackoverflow.com/questions/9887505/how-to-change-tor-identity-in-python https://www.cnblogs.com/nuolan/p/5729650.html   import urllib2 f...

2019-01-08 15:12:47

阅读数 37

评论数 0

python语音识别

转载: https://cloud.tencent.com/developer/article/1176011   语音识别技术,也被称为自动语音识别,目标是以电脑自动将人类的语音内容转换为相应的文字。应用包括语音拨号、语音导航、室内设备控制、语音文档检索、简单的听写数据录入等。 一、功能概...

2019-01-08 12:59:50

阅读数 52

评论数 0

4种预测市场表现的方法

原文:https://www.investopedia.com/articles/07/mean_reversion_martingale.asp   对于任何投资者而言,有两个价格是至关重要的:他或她拥有或计划拥有的投资的当前价格及其未来的售价。尽管如此,投资者仍在不断审查过去的定价历史,并...

2019-01-03 23:23:29

阅读数 18

评论数 0

可以用的VPN

推荐一个付费vpn:https://www.uu635.com/aff.php?aff=2563   但是速度很快,配置简单。最重要的是便宜!10元一个月完全够了! 或者大家可以看看这上面的VPN,不过亲测不靠谱。https://my.oschina.net/penfin/blog/368383...

2018-12-29 00:24:48

阅读数 459

评论数 0

centos7 Docker 搭建 Shadowsocks VPN(海外服务器)

## 安装 docker yum install docker -y ## 启动 docker 服务 service docker start chkconfig docker on ## 检查 docker 版本 docker -version docker pull oddratio...

2018-12-27 18:09:38

阅读数 108

评论数 0

使用xgboost进行特征选择

使用基于决策树的梯度提升算法的一个好处是,可以自动地获取特征的重要性,从而有效地进行特征的筛选。本文基于xgboost进行特征选择的实践 使用gradient boosting计算特征重要性 通过梯度提升的方法,我们可以根据提升之后的树获取每个特征的重要性。 一般来说,特征的重要性表示这个特征...

2018-12-25 22:27:52

阅读数 68

评论数 0

python中Pandas做处理时内存节省的技巧

1.查看dataframe占用空间     例如,我们读取之前的所有行情和因子数据: data = pd.read_csv('total_data.csv', index_col=0) data.info(memory_usage='deep')         首先,我们读取total_d...

2018-12-25 08:59:38

阅读数 40

评论数 0

centos python2.7和Anaconda python3.7共存

在~/.bashrc中添加如下内容: alias python="/usr/bin/python2.7" alias python3="/root/anaconda3/bin/python3.7"   source .b...

2018-12-23 16:02:50

阅读数 29

评论数 0

量化交易资源网站

私募基金、CTA、python量化交易科技版块:http://www.pythonpai.com 免费午餐:https://www.investopedia.com/terms/f/free-lunch.asp 雪球:https://xueqiu.com/ FT中文网:http://www....

2018-12-15 18:15:55

阅读数 77

评论数 0

keras获得某一层或者某层权重的输出

  print("Loading vgg19 weights...")           vgg_model = VGG19(include_top=False, weights='imagenet')           from_vgg = dict() ...

2018-12-11 12:01:18

阅读数 123

评论数 0

7种回归技术

https://www.analyticsvidhya.com/blog/2015/08/comprehensive-guide-regression/  

2018-12-07 16:42:55

阅读数 18

评论数 0

常用数据中心

     1、香港中文大学的数学中英对照:http://www.cmi.hku.hk/Ref/Glossary/Mat/i.htm   2、美国MCM的主页:http://www.comap.com   3、美国普查局: [url=http://2010.census.gov/2010cens...

2018-12-06 13:09:58

阅读数 41

评论数 0

数模赛常用外挂工具汇总(骚操作)

tableau:数据可视化分析工具,下载地址:https://community.tableau.com/welcome    或者使用免费版:https://public.tableau.com/zh-cn/s/ DPS:数据分析工具,比spss,lingo更加容易(傻逼的)的工具    换句...

2018-11-27 14:14:25

阅读数 98

评论数 0

参加2018APMCM B赛题 四天复述以及对数模和机器学习赛的个人感想

     首先感谢我的队友——曹学姐以及王学长,让我第一次数模赛圆满结束(没有什么遗憾吧,尽力了!)。其次,感谢田学长(csdn:Font Tian)给我的两份题目分析,以及王学长(csdn:那岐)对我算法的指导。      这次亚太赛,个人认为AB两题给的数据集都有问题。但是A总体而言,只要有...

2018-11-26 21:20:06

阅读数 348

评论数 0

股票市场的风险度量——证券投资组合分析

中国慕课网-----金融风险管理(东华大学) Markwitz可行集:所有证券组合构成的,任意一个可行的集合。 Markwitz有效集:任意给定风险水平最大的预期回报或任意给定期回报有最小的风险   有效集中的最优股票组合: 一:在有效集上 二:位于投资者的wuca无差异曲线上 ...

2018-11-13 21:33:06

阅读数 30

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭