逆元粗解

   逆元定义:对于正整数,如果有,那么把这个同余方程中的最小正整数解叫做的逆元。

    逆元的求法,包括费马小定理跟拓展欧几里得两种。

费马小定理:

int C[n];
long long pow_w(long long a,long long b,long long c)
{
    long long ret = 1;
    while(b)
    {
        if(b&1)ret = (ret*a)%c;
        a = (a*a)%c;
        b>>=1;
    }
    return ret;
}

void init(int t){  //求t时间时的逆序数
    C[0] = 1;  
    for(int i = 1; i <= t; ++i){  
        C[i] = C[i - 1] * (t - i + 1) % mod *pow_w(i, mod - 2,mod) % mod;  
    }
//求单个逆序数时直接用
//int inv2 = power_mod(a, mod - 2, mod);
拓展欧几里得:
ll exgcd(ll a, ll b, ll &x, ll &y)
{
    if (b == 0)
    {
        x = 1;
        y = 0;
        return a;
    }
    ll r = exgcd(b, a % b, x, y);
    ll t = x % mod;
    x = y % mod;
    y = ((t - a / b * y) % mod + mod) % mod;
    return r;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值