逆元定义:对于正整数和,如果有,那么把这个同余方程中的最小正整数解叫做模的逆元。
逆元的求法,包括费马小定理跟拓展欧几里得两种。
费马小定理:
int C[n];
long long pow_w(long long a,long long b,long long c)
{
long long ret = 1;
while(b)
{
if(b&1)ret = (ret*a)%c;
a = (a*a)%c;
b>>=1;
}
return ret;
}
void init(int t){ //求t时间时的逆序数
C[0] = 1;
for(int i = 1; i <= t; ++i){
C[i] = C[i - 1] * (t - i + 1) % mod *pow_w(i, mod - 2,mod) % mod;
}
//求单个逆序数时直接用
//int inv2 = power_mod(a, mod - 2, mod);
拓展欧几里得:
ll exgcd(ll a, ll b, ll &x, ll &y)
{
if (b == 0)
{
x = 1;
y = 0;
return a;
}
ll r = exgcd(b, a % b, x, y);
ll t = x % mod;
x = y % mod;
y = ((t - a / b * y) % mod + mod) % mod;
return r;
}