
人工智能
文章平均质量分 67
Good LA
这个作者很懒,什么都没留下…
展开
-
线性回归之梯度下降学习法
MSE公式 由上一篇数值预测得到的MSE公式为: 对于wx+b-y,其中wx+b为预测直线,y为样本数据的y值,用yi表示。由于yi对于wx+b预测直线,x值是相同的,因此可以将x=xi,xi、yi为样本数据的值。而b值是一个常量。这时候可以看成求w的值,使得MES最小。(此时x、b、y都是固定值,w是变量) MSE对于W的曲线如下图所示: 对MSE公式求导: 设求导公式A = mse/w 若A > 0, 则w需要变小,w - A 可以使得w变小 若A < 0,则w需要变大,w - A可以原创 2021-06-01 08:55:09 · 590 阅读 · 0 评论 -
线性回归之数值预测
线性回归 给定500 * 2的表,即500行2列的表,列用xy表示,得到模型并做出预测。 x y 3.283938217 4.902920282 0.1234343224 1.8292920292 5.020202020202 10.192929292929 9.232343543 7.39339393939 在平面直角坐标系中,xy可以表示成一个点,得到y=wx+b表达式,使得直角坐标系上的点在这条直线上的距离尽可能短。我们需要不断调整w和b的值,最终得到最优解。 当只有一原创 2021-05-27 01:12:42 · 1195 阅读 · 0 评论