人工智能
文章平均质量分 67
Good LA
这个作者很懒,什么都没留下…
展开
-
线性回归之梯度下降学习法
MSE公式由上一篇数值预测得到的MSE公式为:对于wx+b-y,其中wx+b为预测直线,y为样本数据的y值,用yi表示。由于yi对于wx+b预测直线,x值是相同的,因此可以将x=xi,xi、yi为样本数据的值。而b值是一个常量。这时候可以看成求w的值,使得MES最小。(此时x、b、y都是固定值,w是变量)MSE对于W的曲线如下图所示:对MSE公式求导:设求导公式A = mse/w若A > 0, 则w需要变小,w - A 可以使得w变小若A < 0,则w需要变大,w - A可以原创 2021-06-01 08:55:09 · 505 阅读 · 0 评论 -
线性回归之数值预测
线性回归给定500 * 2的表,即500行2列的表,列用xy表示,得到模型并做出预测。xy3.2839382174.9029202820.12343432241.82929202925.02020202020210.1929292929299.2323435437.39339393939在平面直角坐标系中,xy可以表示成一个点,得到y=wx+b表达式,使得直角坐标系上的点在这条直线上的距离尽可能短。我们需要不断调整w和b的值,最终得到最优解。当只有一原创 2021-05-27 01:12:42 · 1159 阅读 · 0 评论