多重背包

多重背包

题目:

有n种物品和一个容量为kg的背包。第i种物品最多有num件可用,每件重w,价值是v。求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大。

题解:

这个问题非常类似于完全背包问题,所不同的是每种物品为有限件。也就是从每种物品的角度考虑,与它相关的策略已并非取或不取两种,而是有取0件、取1件、……取num件很多种。令f[i,v]表示前i种物品恰放入一个容量为v的背包的最大权值。仍然可以按照每种物品不同的策略写出状态转移方程dp[i][j]=max(dp[i][j],dp[i-1][j-k*w[i]]+k*v[i])。这里k有了限制:<=k<=num.

#include<stdio.h>
#include<string.h>
#define max(a,b) a>b?a:b

int dp[1000],w[100],v[100],num[100];

int main(){
	int n,kg,i,j,k;
	scanf("%d%d",&n,&kg); 
	memset(dp,0,sizeof(dp));
	for(i=1;i<=n;i++){
		scanf("%d%d%d",&w[i],&v[i],&num[i]);
	}
	//核心算法 
	for(i=1;i<=n;i++){
		for(k=0;k<=num[i];k++){//i种物品放k个 
			for(j=kg;j>=w[i];j--){
				dp[j]=max(dp[j],dp[j-k*w[i]]+v[i]);
			}
		}
	}
	printf("%d",dp[kg]);
	return 0;
} 


  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值