网易云课堂吴恩达深度学习微专业相关感受和总结。因为深度学习较机器学习更深一步,所以记录机器学习中没有学到或者温故知新的内容。从总体架构的角度思路来看待机器学习问题
也做了不少CNN相关的项目内容,结合已知进行思考总结。
本文只是概念性的东西,没有太多细节,如果后续做实际的目标检测,再去学习细节,有个宏观印象,便于管控全局。
上一篇:深度学习(6)--神经风格迁移与可视化卷积神经网络(tensorflow实现,可视化卷积神经网络,卷积核输出源码)https://blog.csdn.net/qq_36187544/article/details/92992270
下一篇:深度学习(8)-NLP(词嵌入,嵌入矩阵,词向量,情绪分类,偏见问题)https://blog.csdn.net/qq_36187544/article/details/93503869
目录
RNN
RNN基本模型就是循环神经元,思想是考虑时间的序列,简言之就是序列之间相互关联,考虑关联性。
RNN的不同模式,RNN场景很多,比如语音识别(序列输入->序列化输出)、生成音乐(单输入->序列化输出)、判别得分(序列输入->分类输出)、DNA序列识别(序列输入->序列输出)、机器翻译(序列输入->序列输出)、视频识别(序列输入->分类输出)、名字识别(序列输入->序列输出)。所有涉及多对多,一对多,多对一等模式。
RNN网络模式
除去一般RNN细节外,还有可能如下图,比如一对多,音乐生成,所以把y<t-1>作为y<t>的输入,再比如机器翻译,最后一个多对多方式,特点为输入和输出的长度都不一定,所以分为编码部分和解码部分。
梯度爆炸与梯度消失
梯度修剪:当网络向量大于某阈值时,进行减小处理,相对鲁棒的解决梯度爆炸问题。
对于梯度消失问题,将会比较复杂,采用GRU 、LSTM cell结构和实现,允许神经网络运行庞大的依赖上,即使某两个词的间隔很大也能够有依赖。
经典RNN结构
GRU
GRU:经典RNN变种,利用门控结构避免梯度消失
LSTM
LSTM(长短时记忆网络)是很经典的RNN网络结构,需要时再详细研究。主要通过更新门,遗忘门等形式进行更新传播。
双向RNN
bidirectional RNN(BRNN,双向RNN),网络如其名。优点:双向网络前后都有联系,一般的单向网络,后文受前文影响,但是前文不一定受后文影响,双向实现文章联系性更强。缺点:需要全部的内容才能工作,比如在输入语音时,只有当全部的输入流进入后才能进行后一步工作,但是单向网络不需要受此限制,可以边输入边翻译等工作。
深度RNN
通常的RNN是一条线性网络,Deep RNN类似于网格型的网络。