MapReduce重点总结

MapReduce工作流程与Shuffle机制详解
本文详细介绍了MapReduce的工作流程,重点解析了Shuffle阶段,包括数据分区、环形缓冲区、溢写、排序、归并及Combiner操作。在Shuffle过程中,数据先经分区和排序,然后通过网络传输到Reduce端,Reduce端再进行内存和磁盘的数据排序与分组,为后续处理做好准备。

1.MapReduce工作流程

2.Shuffle机制 

Shuffle机制: 

1)Map方法之后Reduce方法之前这段混洗过程叫Shuffle

2)Map方法之后,数据首先进入到分区方法,把数据标记好分区,然后把数据发送到环形缓冲区环形缓冲区默认大小100m,环形缓冲区达到80%时进行溢写溢写前对数据进行排序,排序按照key索引进行字典顺序排序,排序的手段快排;溢写产生大量溢写文件,需要对溢写文件进行归并排序;对溢写的文件也可以进行Combiner操作,前提是汇总操作,求平均值不行。最后将文件按照分区存储到磁盘,等待Reduce端拉取。

3)每个Reduce拉取Map端对应分区的数据拉取数据后先存储到内存中,内存不够,再存储到磁盘。拉取所有数据后,采用归并排序将内存和磁盘中的数据都进行排序。在进入Reduce方法前,可以对数据进行分组操作。

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值