1.MapReduce工作流程


2.Shuffle机制

Shuffle机制:
1)Map方法之后Reduce方法之前这段混洗的过程叫Shuffle
2)Map方法之后,数据首先进入到分区方法,把数据标记好分区,然后把数据发送到环形缓冲区;环形缓冲区默认大小100m,环形缓冲区达到80%时,进行溢写;溢写前对数据进行排序,排序按照对key的索引进行字典顺序排序,排序的手段快排;溢写产生大量溢写文件,需要对溢写文件进行归并排序;对溢写的文件也可以进行Combiner操作,前提是汇总操作,求平均值不行。最后将文件按照分区存储到磁盘,等待Reduce端拉取。
3)每个Reduce拉取Map端对应分区的数据。拉取数据后先存储到内存中,内存不够了,再存储到磁盘。拉取完所有数据后,采用归并排序将内存和磁盘中的数据都进行排序。在进入Reduce方法前,可以对数据进行分组操作。
MapReduce工作流程与Shuffle机制详解
本文详细介绍了MapReduce的工作流程,重点解析了Shuffle阶段,包括数据分区、环形缓冲区、溢写、排序、归并及Combiner操作。在Shuffle过程中,数据先经分区和排序,然后通过网络传输到Reduce端,Reduce端再进行内存和磁盘的数据排序与分组,为后续处理做好准备。
2262

被折叠的 条评论
为什么被折叠?



