LeetCode746:使用最小花费爬楼梯

110 篇文章 0 订阅

数组的每个索引做为一个阶梯,第 i个阶梯对应着一个非负数的体力花费值 cost[i](索引从0开始)。

每当你爬上一个阶梯你都要花费对应的体力花费值,然后你可以选择继续爬一个阶梯或者爬两个阶梯。

您需要找到达到楼层顶部的最低花费。在开始时,你可以选择从索引为 0 或 1 的元素作为初始阶梯。

示例 1:

输入: cost = [10, 15, 20]
输出: 15
解释: 最低花费是从cost[1]开始,然后走两步即可到阶梯顶,一共花费15。

 示例 2:

输入: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
输出: 6
解释: 最低花费方式是从cost[0]开始,逐个经过那些1,跳过cost[3],一共花费6。

注意:

  1. cost 的长度将会在 [2, 1000]
  2. 每一个 cost[i] 将会是一个Integer类型,范围为 [0, 999]

解析:

    典型的动态规划问题。只是这个动态规划的递推公式在最后一步的时候需要注意,如果是从倒数第二个台阶上上来的,则不需要加最后的一个台阶的花费,否则需要加上。整体递推公式为dp[i]=min(dp[i-1],dp[i-2])+cost[i]。最后一步则比较dp[size-1]=min(dp[size-2],dp[size-3]+cost[size-1])。

代码:

int minCostClimbingStairs(vector<int>& cost)
 {
        int size=cost.size();
        if(size==2)
            return cost[0]>cost[1]?cost[1]:cost[0];
        vector<int>dp(size);
        dp[0]=cost[0];
        dp[1]=cost[1];
        for(int i=2;i<size;i++)
        {
            if(i<size-1)
                dp[i]=min(dp[i-1],dp[i-2])+cost[i];
            else
                dp[i]=min(dp[i-2]+cost[i],dp[i-1]);//最后一步的不同
        }
        
        return dp[size-1];
    }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值