数组的每个索引做为一个阶梯,第 i
个阶梯对应着一个非负数的体力花费值 cost[i]
(索引从0开始)。
每当你爬上一个阶梯你都要花费对应的体力花费值,然后你可以选择继续爬一个阶梯或者爬两个阶梯。
您需要找到达到楼层顶部的最低花费。在开始时,你可以选择从索引为 0 或 1 的元素作为初始阶梯。
示例 1:
输入: cost = [10, 15, 20] 输出: 15 解释: 最低花费是从cost[1]开始,然后走两步即可到阶梯顶,一共花费15。
示例 2:
输入: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] 输出: 6 解释: 最低花费方式是从cost[0]开始,逐个经过那些1,跳过cost[3],一共花费6。
注意:
cost
的长度将会在[2, 1000]
。- 每一个
cost[i]
将会是一个Integer类型,范围为[0, 999]
。
解析:
典型的动态规划问题。只是这个动态规划的递推公式在最后一步的时候需要注意,如果是从倒数第二个台阶上上来的,则不需要加最后的一个台阶的花费,否则需要加上。整体递推公式为dp[i]=min(dp[i-1],dp[i-2])+cost[i]。最后一步则比较dp[size-1]=min(dp[size-2],dp[size-3]+cost[size-1])。
代码:
int minCostClimbingStairs(vector<int>& cost)
{
int size=cost.size();
if(size==2)
return cost[0]>cost[1]?cost[1]:cost[0];
vector<int>dp(size);
dp[0]=cost[0];
dp[1]=cost[1];
for(int i=2;i<size;i++)
{
if(i<size-1)
dp[i]=min(dp[i-1],dp[i-2])+cost[i];
else
dp[i]=min(dp[i-2]+cost[i],dp[i-1]);//最后一步的不同
}
return dp[size-1];
}