随着无人机在物流、监控等领域的快速普及,其续航问题成为制约行业发展的瓶颈。而如何利用有限的充电资源高效支持无人机运行,已成为一个值得深入研究的问题。本文将结合一段扩展版示例代码,深入探讨多目标优化和仿真技术在无人机调度与充电站布局中的应用。
背景与挑战
无人机的能耗管理主要受以下因素限制:
-
电池容量有限:频繁充电或换电增加运维成本。
-
任务的动态性:任务分布在不同地理位置,可能实时变化。
-
充电站选址与数量:建站成本高,需要在成本与覆盖效率间平衡。
传统方法往往只关注单一目标(如最短距离或最低成本),而忽略了多目标协同优化的重要性。
解决方案概览
这段示例代码展示了如何通过数学优化和事件驱动仿真,实现无人机任务调度与充电站布局的协同优化。主要包含以下模块:
1. 多目标充电站选址优化
采用 Pyomo 框架解决多目标优化问题,目标包括:
-
建站成本最小化
-
城市到充电站的总距离最小化
-
覆盖率最大化