上海计算机学会2023年8月月赛C++乙组T4极值的和

文章介绍了如何用O(n)的时间复杂度解决给定序列中每个连续子序列最大值之和的问题,通过分析和利用单调队列实现,对比了O(n^2)的递推方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原题链接

极值的和

内存限制: 256 Mb时间限制: 1000 ms

题目描述

给定一个序列 a1​,a2​,a3​,…,an​,请求出该序列每一个连续子序列的最大值,并计算这些最大值的和。

也就是求出

1≤i≤j≤n∑​max{ai​,ai+1​,⋯,aj​}

输入格式
  • 第一行:单个整数 n
  • 第二行:n 个整数表示 a1​,a2​,…,an​
输出格式
  • 单个整数:表示所有区间最大数的和
数据范围
  • 对于 30% 的数据,1≤n≤500
  • 对于 60% 的数据,01≤n≤50,000
  • 对于 100% 的数据,1≤n≤500,000
  • 0≤ai​≤1,000,000
样例数据

输入:
2
6 8
输出:
22
说明:
6 + 8 + 8 = 22
输入:
3
4 5 6
输出:
32
 

解析:

对于60%的数据,可以使用O(n^2)的算法即,递推出所有组合的最大值,详见代码:

#include<bits/stdc++.h>
using namespace std;
int n;
int a[50005];
long long ans = 0;
int main() {
    scanf("%d", &n);
    if (n <= 50000) {
        for (int i = 1; i <= n; i++) {
            scanf("%d", &a[i]);
            ans += a[i];
        }
        for (int i = n - 1; i >= 1; i--) {
            for (int j = 1; j <= i; j++) {
                a[j] = max(a[j], a[j + 1]);
                ans += a[j];
            }
        }
        printf("%ld", ans);
    }
    return 0;
}

对于在(l,r)区间的最大值x,若x的位置是t,我们可以分析出,其是(t-l)*(r-t)个组合的最大值,我们只要找到每一个数的最大值区间就可以了。我们可以采用单调队列来找到每一个数作为最大值的(l,r)区间。详见代码:

 

#include<bits/stdc++.h>
using namespace std;
int n;
long long ans=0;
struct node{
    int id;
    int v;
};
stack <node> s;//单调栈,保证栈内元素不递增
int main() {
    scanf("%d", &n);
    for (int i=1;i<=n+1;i++){
        node x;
        if (i==n+1){//设置尾部哨兵
            x.v=1e9;
        }else{
            scanf("%d",&x.v);
        }
        x.id=i;
        //如果当前元素大于栈顶,则栈顶元素的右边界为当前元素位置,左边界为次栈顶元素位置
        //我们可以计算其贡献值
        while(!s.empty()&&s.top().v<x.v){
            node now=s.top();//取栈顶元素
            s.pop();//弹出栈顶元素
            int p,q=i;//pq为左右边界
            if (!s.empty()){//如果栈内非空,左边界为栈顶元素ID
                p=s.top().id;
            }else {//否则左边界为0
                p=0;
            }
            //计算贡献
            ans+=(long long)(q-now.id)*(now.id-p)*now.v;
        }
        s.push(x);//当前元素入栈
    }
    cout<<ans;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长春高老师信奥工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值