2. 自幂数判断
【问题描述】
自幂数是指,一个N
位数,满足各位数字N
次方之和是本身。例如,153 是 3 位数,其每位数的 3 次方之和,
1
3
+ 5
3
+ 3
3
= 153,因此 153 是自幂数;1634 是 4 位数,其每位数的 4 次方之和,
1
4
+ 6
4
+ 3
4
+ 4
4
= 1634,因此 1634 是自 幂数。
现在,输入若干个正整数,请判断它们是否是自幂数。
【输入描述】
输入第一行是一个正整数M
,表示有M
个待判断的正整数。约定
1 ≤ M ≤ 100
。
从第 2 行开始的M
行,每行一个待判断的正整数。约定这些正整数均小于
10^
8
。
【输出描述】
输出M
行,如果对应的待判断正整数为自幂数,则输出英文大写字母
'T',否则输出英文大写字母
'F'
。
提示:不需要等到所有输入结束在依次输出,可以输入一个数就判断一个数并输出,再输入下一个数。
【样例输入 1】
3
152
111
153
【样例输出 1】
F
F
T
【样例输入 2】
5
8208
548834
88593477
12345
5432
【样例输出 2】
T
T
T
F
F
解析:先计算位数,然后取,每一位,计算幂次和,详见代码:
#include <iostream>
using namespace std;
int main() {
int m = 0;
cin >> m;
for (int i = 0; i < m; i++) {
int n = 0;
cin >> n;
// 数一下 n 有多少位数,记为 l
int t = n, l = 0;
while (t > 0) {
t /= 10;
l++;
}
// 每位数 l 次方求和,记为 sum
int sum = 0;
t = n;
while (t > 0) {
int d = t % 10;
t /= 10;
int mul = 1;
for (int j = 0; j < l; j++)
mul *= d;
sum += mul;
}
// 根据 sum 和 n 是否相等,判断是否为自幂数
if (sum == n)
cout << "T" << endl;
else
cout << "F" << endl;
}
return 0;
}