信息学奥赛一本通 T1169 大整数减法 高精度算法

1169:大整数减法


时间限制: 1000 ms         内存限制: 65536 KB

【题目描述】

求两个大的正整数相减的差。

【输入】

共2行,第1行是被减数a,第2行是减数b(a > b)。每个大整数不超过200位,不会有多余的前导零。

【输出】

一行,即所求的差。

【输入样例】

9999999999999999999999999999999999999
9999999999999

【输出样例】

9999999999999999999999990000000000000

 【解析】

用字符串输入被减数和减数,判断被减数是否大于减数,如果小于减数,输出负号,然后交换减数和被减数;

将被减数,减数转化成数组,然后逐位相减,详见代码:

#include <bits/stdc++.h>
using namespace std;
string s1,s2;
int a[205];//被减数
int b[205];//减数
int c[205];//差
int main() {
    cin>>s1>>s2;
    int len1=s1.length();
    int len2=s2.length();
    if (len2>len1){//如果减数长度大于被减数
        cout<<'-';//输出负号
        swap(s1,s2);//交换减数和被减数
        swap(len1,len2);//长度也交换一下
    }
    if (len1==len2&&s2>s1){//如果长度相等,减数大于被减数
        cout<<'-';//输出负号
        swap(s1,s2);//交换减数和被减数
    }
    for(int i=0;i<len1;i++){//被减数转换为a数组
        a[len1-i]=s1[i]-'0';
    }
    for(int i=0;i<len2;i++){//减数转换为b数组
        b[len2-i]=s2[i]-'0';
    }
    for(int i=1;i<=len1;i++){//从个位到高位,逐位相减
        if (a[i]>=b[i]){//够减
            c[i]=a[i]-b[i];//直接减
        }else{//不够减
            a[i+1]--;//从上一位借1
            c[i]=a[i]+10-b[i];//加10再减
        }
    }
    bool f=1;//前导零
    for(int i=len1;i>=1;i--){
        if (f==0||c[i]>0){//如果没有前导零或者当前位不为0
            f=0;//不再有前导零
            cout<<c[i];//输出当前位
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长春高老师信奥工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值