上海计算机学会2022年4月月赛C++丙组T5圆环独立集(一)

本文介绍了一种使用动态规划解决环状数列中选取最大独立集问题的方法,以求得数字之和的最大值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

圆环独立集(一)

内存限制: 256 Mb时间限制: 1000 ms

题目描述

给定一个长度为 n 的环状数列 a1​,a2​,⋯,an​,请从这些数字中间挑选出一个独立集,使得独立集中的数字之和达到最大。

所谓环状,是指在考虑相邻关系时,需要把 a1​ 和 an​ 也看做是一对邻居。所谓独立集,就是挑选出的数字在原来的圆环上不能相邻。

输入格式

第一行:单个整数表示 n。
第二行:n 个整数表示 a1​,a2​,⋯,an​。

输出格式

单个整数:表示独立的数字之和的最大值。

数据范围
  • 对于 30% 的数据,1≤n≤20;
  • 对于 60% 的数据,1≤n≤5000;
  • 对于 100% 的数据,1≤n≤500,000,
  • 1≤ai​≤1,000,000。
样例数据

输入:
5
1 1 1 1 1
输出:
2
输入:
6
100 1 1 100 1 1
输出:
200
说明:
这个例子告诉我们最优独立集不一定是最大独立集 

 解析:

动态规划

详见代码:

#include <bits/stdc++.h>
using namespace std;
int n;
int a[500005];
long long dp[500005][2];//取第一个点
long long dp2[500005][2];//不取第一个点
int main() {
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        scanf("%d",&a[i]);
    }
    if (n==1) {
        cout<<a[1];
        return 0;
    }
    dp[1][0]=0;
    dp[1][1]=a[1];
    for(int i=2;i<=n;i++){
        dp[i][0]=max(dp[i-1][0],dp[i-1][1]);//不取第i个点
        dp[i][1]=dp[i-1][0]+a[i];//取第i个点
    }
    dp2[1][0]=0;
    dp2[1][1]=0;
    for(int i=2;i<=n;i++){
        dp2[i][0]=max(dp2[i-1][0],dp2[i-1][1]);//不取第i个点
        dp2[i][1]=dp2[i-1][0]+a[i];//取第i个点
    }
    cout<<max(dp[n][0],dp2[n][1]);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长春高老师信奥工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值