相等子序列
内存限制: 256 Mb时间限制: 1000 ms
题目描述
给定一个序列 a1,a2,⋯,an,请计算它有多少种不同的相等子序列。由于答案可能很大,输出方案数量模 1,000,000,007 的余数。
子序列是指从原序列中去除部分数字组成的序列(且留下的数字应保持原序列的顺序),空集不算子序列,原序列本身算是自身的一种子序列。
两个子序列相等,是指他们的长度相同,且对应的每一个数字都相等。比如对于序列 1,2,1,2,3 来说,第一个 1,21,2 与 第二个 1,2 就是相等的子序列。
输入格式
第一行:单个整数 n,代表序列长度
第二行:n 个整数 ,代表 a1 到 an
输出格式
单个整数:表示不相等子序列的数量模 10^9+7 的余数。
数据范围
- 对于 30% 的数据,保证 1≤n≤15;
- 对于 50% 的数据,保证 1≤n≤10^3;
- 对于 100% 的数据,保证 1≤n≤10^6;
- 1≤ai≤10^6
样例数据
输入:
4
1 2 3 2
输出:
13
解析:递推法,
如果当前数之前没有出现过,那么前边的所有子序列都可以加上当前数,组成新的子序列,加上原来的子序列数量,即为原来子序列数量的2倍;
如果当前数之前出现过,那么以之前以当前数结尾的子序列会重复,