区间求和
内存限制: 512 Mb时间限制: 1000 ms
题目描述
Carol 最近正在学习前缀和:给定序列 a1∼n 与 q 次询问,每次询问给出 l,r,求 al∼r 的和。这样的问题对 Carol 来说已经太简单了,他发现交换一些序列 a 中的元素的值可以改变询问的结果。
面对这个发现,他提出了一个新的问题:给定序列 a1∼n 与 q 次询问,每次询问给出 l,r,如果可以在执行询问前任意次交换 a 中两个元素的位置得到 a1∼n′,所有询问的答案之和最大是多少?一次询问的答案指的是 al∼r′ 的和。
需要注意的是,Carol 只能在开始询问前交换元素,然后求出所有询问的答案之和。
输入格式
第一行一个整数 T 表示数据组数,对于每组数据:
第一行两个整数 n,q。
第二行 n 个整数 a1∼n。
接下来 q 行,第 i 行两个整数 li,ri 表示第 i 次询问的参数。
输出格式
对于每组数据,输出一行一个答案表示最大的询问答案之和。
数据范围
对于 30% 的数据,1≤T≤10,1≤n,q≤10。
对于 60% 的数据,1≤T≤10,1≤n,q≤1000。
对于 100% 的数据,1≤T≤10^4,1≤n,∑n≤2×10^5,1≤q,∑q≤2×10^5,1≤ai≤10^5,1≤l≤r≤n。
样例数据
输入:
2
5 2
1 2 3 4 5
1 4
2 3
2 3
1 1
1 1
1 2
2 2
输出:
23
4
说明:
样例解释:对于第一组数据,把a变为2 4 5 3 1即可得到答案之和为23,可以验证没有更大的答案之和。
解析:可以先将q个区间利用差分,求出每个位置在和中的使用次数,然后按从大到小的顺序将使用次数排序,然后将n个数从大到小排序,利用贪心策略,让最大的数使用次数最多,即为答案,详见代码:
#include <bits/stdc++.h>
using namespace std;
long long a[200005];
int b[200005];
int main() {
int t, n, q;
cin >> t;
while(t--) {
cin >> n >> q;
for(int i = 1; i <= n; i++) {
cin >> a[i];
b[i] = 0;//差分数组归零
}
for(int i = 1; i <= q; i++) {//将q个区间差分
int l, r;
cin >> l >> r;
b[l]++;
b[r + 1]--;
}
for(int i = 1; i <= n; i++) {//前缀和,求出每个位置的使用次数
b[i] += b[i - 1];
}
sort(a + 1, a + n + 1, greater<int>());//数字从大到小排序
sort(b + 1, b + n + 1, greater<int>());//使用次数从大到小排序
long long ans = 0;//注意数据范围
for(int i = 1; i <= n; i++) {//贪心策略
if (b[i] == 0) break;//如果后续使用次数为0,结束计算
ans += a[i] * b[i];//使用次数最多的用最大的数
}
cout << ans << endl;
}
return 0;
}