B4263 [GESP202503 四级] 荒地开垦
题目描述
小杨有一大片荒地,可以表示为一个 n n n 行 m m m 列的网格图。
小杨想要开垦这块荒地,但荒地中一些位置存在杂物,对于一块不存在杂物的荒地,该荒地可以开垦当且仅当其上下左右四个方向相邻的格子均不存在杂物。
小杨可以选择至多一个位置,清除该位置的杂物,移除杂物后该位置变为荒地。小杨想知道在清除至多一个位置的杂物的情况下,最多能够开垦多少块荒地。
输入格式
第一行包含两个正整数 n , m n, m n,m,含义如题面所示。
之后
n
n
n 行,每行包含一个长度为
m
m
m 且仅包含字符 .
和 #
的字符串。如果为 .
,代表该位置为荒地;如果为 #
,代表该位置为杂物。
输出格式
输出一个整数,代表在清除至多一个位置的杂物的情况下,最多能够开垦的荒地块数。
输入输出样例 #1
输入 #1
3 5
.....
.#..#
.....
输出 #1
11
说明/提示
样例解释
移除第二行从左数第二块空地的杂物后:
.....
....#
.....
第一行从左数前 4 4 4 块荒地,第二行从左数前 3 3 3 块荒地,第三行从左数前 4 4 4 块荒地,均可开垦, 4 + 3 + 4 = 11 4+3+4=11 4+3+4=11。
数据范围
对于全部数据,有 1 ≤ n , m ≤ 1000 1\leq n,m\leq 1000 1≤n,m≤1000。
解析
模拟,详见代码:
#include<bits/stdc++.h>
using namespace std;
int n, m;
char a[1005][1005];//地图
int x, y, mx = 0;
int dx[4] = {0, 0, 1, -1};
int dy[4] = {1, -1, 0, 0};
int ans = 0;
int check(int u, int v) { //看看周围四个位置有几个杂物
int ret = 0;
for(int i = 0; i < 4; i++) {
int uu = u + dx[i];
int vv = v + dy[i];
if (a[uu][vv] == '#') {
ret++;
}
}
return ret;
}
int f(int u, int v) { //将uv位置的杂物去掉,可以多获得几块地
int ret = 1;
bool flag = 1; //自己能否被开垦
for(int i = 0; i < 4; i++) {
int uu = u + dx[i];
int vv = v + dy[i];
if (a[uu][vv] == '#') {
flag = 0;
}
if (a[uu][vv] == '.' && check(uu, vv) == 1) {
ret++;
}
}
return ret + flag;
}
int main() {
cin >> n >> m;
for(int i = 1; i <= n; i++) { //输入地图
for(int j = 1; j <= m; j++) {
cin >> a[i][j];
}
}
for(int i = 1; i <= n; i++) { //找到移除后可以增加开垦最多的杂物地块
for(int j = 1; j <= m; j++) {
if (a[i][j] == '#') {
int d = f(i, j); //计算数量
if (d > mx) { //取最大值,记录位置
x = i;
y = j;
mx = d;
}
}
}
}
a[x][y] = '.'; //清除杂物
for(int i = 1; i <= n; i++) { //计算可开垦数量
for(int j = 1; j <= m; j++) {
if (a[i][j] == '.' && check(i, j) == 0) {
ans++;
}
}
}
cout << ans;
return 0;
}
官方给的思路更简洁一些,详见代码:
#include<bits/stdc++.h>
using namespace std;
int n, m;
char a[1005][1005];//地图
int z[1005][1005];//z[i][j]表示ij位置的杂物如果被清除,可以多开垦几个地块
int mx = 0;
int dx[4] = {0, 0, 1, -1};
int dy[4] = {1, -1, 0, 0};
int ans = 0;
int main() {
cin >> n >> m;
for(int i = 1; i <= n; i++) { //输入地图
for(int j = 1; j <= m; j++) {
cin >> a[i][j];
}
}
for(int i = 1; i <= n; i++) {//循环计算每个地块周围的杂物数量
for(int j = 1; j <= m; j++) {
int num = 0; //周围有几个杂物
int p;//杂物所在方向
for (int k = 0; k < 4; k++) {
//如果k方向是杂物
if (a[i + dx[k]][j + dy[k]] == '#') {
num++;
p = k; //记录杂物所在方向
}
}
//地块是荒地,且周围只有一个杂物,则该杂物清除后,此地块可开垦
if(a[i][j] == '.' && num == 1) {
z[i + dx[p]][j + dy[p]]++;
} else if (a[i][j] == '.' && num == 0) { //若该地块为荒地且周围无杂物
ans++;//可开垦数量加一
} else if (a[i][j] == '#' && num == 0) { //若杂物地块周围无杂物
z[i][j]++;//该地块杂物去除后可开垦
}
}
}
for(int i = 1; i <= n; i++) {//循环找出去掉一块杂物最多可以多开垦的荒地数量
for(int j = 1; j <= m; j++) {
mx = max(mx, z[i][j]);
}
}
cout << ans + mx;
return 0;
}