CCF-GESP计算机学会等级考试2025年3月四级C++T2 二阶矩阵

B4264 [GESP202503 四级] 二阶矩阵

题目描述

小 A 有一个 n n n m m m 列的矩阵 A A A

小 A 认为一个 2 × 2 2 \times 2 2×2 的矩阵 D D D 是好的,当且仅当 D 1 , 1 × D 2 , 2 = D 1 , 2 × D 2 , 1 D_{1,1} \times D_{2,2} = D_{1,2} \times D_{2,1} D1,1×D2,2=D1,2×D2,1。其中 D i , j D_{i,j} Di,j 表示矩阵 D D D 的第 i i i 行第 j j j 列的元素。

小 A 想知道 A A A 中有多少个好的子矩阵。

输入格式

第一行,两个正整数 n , m n, m n,m

接下来 n n n 行,每行 m m m 个整数 A i , 1 , A i , 2 , … , A i , m A_{i,1}, A_{i,2}, \ldots, A_{i,m} Ai,1,Ai,2,,Ai,m

输出格式

一行,一个整数,表示 A A A 中好的子矩阵的数量。

输入输出样例 #1

输入 #1

3 4
1 2 1 0
2 4 2 1
0 3 3 0

输出 #1

2

说明/提示

样例解释

样例中好的子矩阵如下:

数据范围

对于所有测试点,保证 1 ≤ n ≤ 500 1\leq n\leq 500 1n500 1 ≤ m ≤ 500 1\leq m\leq 500 1m500 − 100 ≤ A i , j ≤ 100 -100\leq A_{i,j}\leq 100 100Ai,j100

解析

模拟,详见代码:

#include<bits/stdc++.h>
using namespace std;
int n, m;
int a[505][505];
int ans = 0;
int main() {
    cin >> n >> m;
    for(int i = 1; i <= n; i++) { //输入
        for(int j = 1; j <= m; j++) {
            cin >> a[i][j];
        }
    }
    for(int i = 1; i < n; i++) { //循环判断是否为好子矩阵
        for(int j = 1; j < m; j++) {
            if (a[i][j]*a[i + 1][j + 1] == a[i + 1][j]*a[i][j + 1]) {
                ans++;
            }
        }
    }
    cout << ans;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长春高老师信奥工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值