B4264 [GESP202503 四级] 二阶矩阵
题目描述
小 A 有一个 n n n 行 m m m 列的矩阵 A A A。
小 A 认为一个 2 × 2 2 \times 2 2×2 的矩阵 D D D 是好的,当且仅当 D 1 , 1 × D 2 , 2 = D 1 , 2 × D 2 , 1 D_{1,1} \times D_{2,2} = D_{1,2} \times D_{2,1} D1,1×D2,2=D1,2×D2,1。其中 D i , j D_{i,j} Di,j 表示矩阵 D D D 的第 i i i 行第 j j j 列的元素。
小 A 想知道 A A A 中有多少个好的子矩阵。
输入格式
第一行,两个正整数 n , m n, m n,m。
接下来 n n n 行,每行 m m m 个整数 A i , 1 , A i , 2 , … , A i , m A_{i,1}, A_{i,2}, \ldots, A_{i,m} Ai,1,Ai,2,…,Ai,m。
输出格式
一行,一个整数,表示 A A A 中好的子矩阵的数量。
输入输出样例 #1
输入 #1
3 4
1 2 1 0
2 4 2 1
0 3 3 0
输出 #1
2
说明/提示
样例解释
样例中好的子矩阵如下:
数据范围
对于所有测试点,保证 1 ≤ n ≤ 500 1\leq n\leq 500 1≤n≤500, 1 ≤ m ≤ 500 1\leq m\leq 500 1≤m≤500, − 100 ≤ A i , j ≤ 100 -100\leq A_{i,j}\leq 100 −100≤Ai,j≤100
解析
模拟,详见代码:
#include<bits/stdc++.h>
using namespace std;
int n, m;
int a[505][505];
int ans = 0;
int main() {
cin >> n >> m;
for(int i = 1; i <= n; i++) { //输入
for(int j = 1; j <= m; j++) {
cin >> a[i][j];
}
}
for(int i = 1; i < n; i++) { //循环判断是否为好子矩阵
for(int j = 1; j < m; j++) {
if (a[i][j]*a[i + 1][j + 1] == a[i + 1][j]*a[i][j + 1]) {
ans++;
}
}
}
cout << ans;
return 0;
}