CCF-GESP计算机学会等级考试2025年3月六级C++T1 树上漫步

P11962 [GESP202503 六级] 树上漫步

题目描述

小 A 有一棵 n n n 个结点的树,这些结点依次以 1 , 2 , ⋯   , n 1,2,\cdots,n 1,2,,n 标号。

小 A 想在这棵树上漫步。具体来说,小 A 会从树上的某个结点出发,每⼀步可以移动到与当前结点相邻的结点,并且小 A 只会在偶数步(可以是零步)后结束漫步。

现在小 A 想知道,对于树上的每个结点,从这个结点出发开始漫步,经过偶数步能结束漫步的结点有多少个(可以经过重复的节点)。

输入格式

第一行,一个正整数 n n n

接下来 n − 1 n-1 n1 行,每行两个整数 u i , v i u_i,v_i ui,vi,表示树上有⼀条连接结点 u i u_i ui 和结点 v i v_i vi 的边。

输出格式

一行, n n n 个整数。第 i i i 个整数表示从结点 i i i 出发开始漫步,能结束漫步的结点数量。

输入输出样例 #1

输入 #1

3
1 3
2 3

输出 #1

2 2 1

输入输出样例 #2

输入 #2

4
1 3
3 2
4 3

输出 #2

3 3 1 3

说明/提示

对于 40 % 40\% 40% 的测试点,保证 1 ≤ n ≤ 1 0 3 1\leq n\leq 10^3 1n103

对于所有测试点,保证 1 ≤ n ≤ 2 × 1 0 5 1\leq n\leq 2\times 10^5 1n2×105

解析

树上两点间的最短路径的奇偶性决定的两点间所有路径的奇偶性,因为多出来的路都是往返,即偶数,所以只要确定到起点(1)的奇偶性就可以了,所有奇点互相之间可以偶数步到达,所有偶点间可以偶数步到达,所以只要从起点开始dfs,就可以确定所有点的偶数步可以到达的点了,详见代码:

#include<bits/stdc++.h>
using namespace std;
int n;
bool b[200005];//节点奇偶性
bool vis[200005];//节点是否被访问过
vector <int> g[200005];//邻接表存树
int ans = 0;
void dfs(int x) { //深搜,确定每个点的奇偶性
    for(int i = 0; i < g[x].size(); i++) {
        int y = g[x][i];
        if (vis[y] == 0) {
            vis[y] = 1;
            b[y] = !b[x]; //奇变偶,偶变奇
            dfs(y);
        }
    }
    return;
}
int main() {
    cin >> n;
    for(int i = 1; i < n; i++) { //邻接表存树
        int u, v;
        cin >> u >> v;
        g[u].push_back(v);
        g[v].push_back(u);
    }
    vis[1] = 1;
    dfs(1);//从节点1开始深搜
    for(int i = 1; i <= n; i++) { //统计奇性点
        ans += b[i];
    }
    for(int i = 1; i <= n; i++) { //循环打印答案
        if (b[i]) { //奇性点
            cout << ans << " ";
        } else { //偶性点
            cout << n - ans << " ";
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长春高老师信奥工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值