P11962 [GESP202503 六级] 树上漫步
题目描述
小 A 有一棵 n n n 个结点的树,这些结点依次以 1 , 2 , ⋯ , n 1,2,\cdots,n 1,2,⋯,n 标号。
小 A 想在这棵树上漫步。具体来说,小 A 会从树上的某个结点出发,每⼀步可以移动到与当前结点相邻的结点,并且小 A 只会在偶数步(可以是零步)后结束漫步。
现在小 A 想知道,对于树上的每个结点,从这个结点出发开始漫步,经过偶数步能结束漫步的结点有多少个(可以经过重复的节点)。
输入格式
第一行,一个正整数 n n n。
接下来 n − 1 n-1 n−1 行,每行两个整数 u i , v i u_i,v_i ui,vi,表示树上有⼀条连接结点 u i u_i ui 和结点 v i v_i vi 的边。
输出格式
一行, n n n 个整数。第 i i i 个整数表示从结点 i i i 出发开始漫步,能结束漫步的结点数量。
输入输出样例 #1
输入 #1
3
1 3
2 3
输出 #1
2 2 1
输入输出样例 #2
输入 #2
4
1 3
3 2
4 3
输出 #2
3 3 1 3
说明/提示
对于 40 % 40\% 40% 的测试点,保证 1 ≤ n ≤ 1 0 3 1\leq n\leq 10^3 1≤n≤103。
对于所有测试点,保证 1 ≤ n ≤ 2 × 1 0 5 1\leq n\leq 2\times 10^5 1≤n≤2×105。
解析
树上两点间的最短路径的奇偶性决定的两点间所有路径的奇偶性,因为多出来的路都是往返,即偶数,所以只要确定到起点(1)的奇偶性就可以了,所有奇点互相之间可以偶数步到达,所有偶点间可以偶数步到达,所以只要从起点开始dfs,就可以确定所有点的偶数步可以到达的点了,详见代码:
#include<bits/stdc++.h>
using namespace std;
int n;
bool b[200005];//节点奇偶性
bool vis[200005];//节点是否被访问过
vector <int> g[200005];//邻接表存树
int ans = 0;
void dfs(int x) { //深搜,确定每个点的奇偶性
for(int i = 0; i < g[x].size(); i++) {
int y = g[x][i];
if (vis[y] == 0) {
vis[y] = 1;
b[y] = !b[x]; //奇变偶,偶变奇
dfs(y);
}
}
return;
}
int main() {
cin >> n;
for(int i = 1; i < n; i++) { //邻接表存树
int u, v;
cin >> u >> v;
g[u].push_back(v);
g[v].push_back(u);
}
vis[1] = 1;
dfs(1);//从节点1开始深搜
for(int i = 1; i <= n; i++) { //统计奇性点
ans += b[i];
}
for(int i = 1; i <= n; i++) { //循环打印答案
if (b[i]) { //奇性点
cout << ans << " ";
} else { //偶性点
cout << n - ans << " ";
}
}
return 0;
}