每日数学-导数

  导数的定义

设f(x)在区间x0的邻域内有定义,极限

\lim_{\bigtriangleup x->0}\frac{f(x0+\bigtriangleup x)-f(x0)}{\bigtriangleup x}=A\lim_{x->x0}\frac{f(x)-f(x0)}{x-x0}=A 存在,则称f(x)在x=x0处可导,A称为f(x)在x=x0处的导数。

如果在(a,b)内处处可导,则称f(x)在(a,b)内可导.

在x=x0处可导的充分必要条件

左导数=右导数=导数  (在x0点的)

可导与连续的关系

可导一定连续,连续不一定可导(比如y=|x|)

微分定义

设函数y = f(x)在x的邻域内有定义,x及x + Δx在此区间内。如果函数的增量Δy = f(x + Δx) - f(x)可表示为 Δy = AΔx + o(Δx)(其中A是不依赖于Δx的常数),而o(Δx)是比Δx高阶的无穷小(注:o读作奥密克戎,希腊字母)那么称函数f(x)在点x是可微的,且AΔx称作函数在点x相应于因变量增量Δy的微分,记作dy,即dy = AΔx。函数的微分是函数增量的主要部分,且是Δx的线性函数,故说函数的微分是函数增量的线性主部(△x→0)。

通常把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。函数因变量的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商

微分推导

设函数y = f(x)在某区间内有定义,x0及x0+△x在这区间内,若函数的增量Δy = f(x0 + Δx) − f(x0)可表示为Δy = AΔx + o(Δx),其中A是不依赖于△x的常数, o(Δx)是△x的高阶无穷小,则称函数y = f(x)在点x0是可微的。 AΔx叫做函数在点x0相应于自变量增量△x的微分,记作dy,即:dy=AΔx。微分dy是自变量改变量△x的线性函数,dy与△y的差是关于△x的高阶无穷小量,我们把dy称作△y的线性主部。得出: 当△x→0时,△y≈dy。 导数的记号为:(dy)/(dx)=f′(X),我们可以发现,它不仅表示导数的记号,而且还可以表示两个微分的比值(把△x看成dx,即:定义自变量的增量等于自变量的微分),还可表示为dy=f′(X)dX。

微分几何意义

设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲 线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。

可微的充分必要条件

函数f在点  可微的充要条件是函数f在点  可导,而且式中的A等于  

若二元函数f在其定义域内一点  可微,则f在该点关于每个自变量的偏导数都存在,且式中的

因此,函数f在点  的全微分(3)可惟一地表示为

若函数f在区域D上的每一点  都可微,则称函数f在区域D上可微,且在D上全微分为

若函数  的偏导数在点 的某领域上存在,且  与  在点  连续,则函数f在点  可微  

注意 偏导数连续并不是函数可微的必要条件

求导公式

1.若函数  都可导,则

2.加减乘都可以推广到n个函数的情况,例如乘法:

3.数乘性

作为乘法法则的特例若为  常数c,则  ,这说明常数可任意进出导数符号。

4.线性性

求导运算也是满足线性性的,即可加性、数乘性,对于n个函数的情况:

反求导公式

若函数  严格单调且可导,则其反函数  的导数存在且 。

复合函数求导

若  在点x可导  在相应的点u也可导,则其复合函数  在点x可导且  。

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值